Vol. 37, issue 11, article # 6

Samoilova S. V., Balin Yu. S., Penner I. E. Estimation of atmospheric optical parameters with simultaneous measurement of vibrational-rotational and purely rotational Raman spectra. // Optika Atmosfery i Okeana. 2024. V. 37. No. 11. P. 939–946. DOI: 10.15372/AOO20241106 [in Russian].
Copy the reference to clipboard

Abstract:

The paper considers the methodological features of determining the optical extinction and backscattering coefficients by simultaneous lidar measurements at the following wavelengths: 532 nm (elastic scattering, ES); 607 nm (vibrational-rotational Raman scattering, RS); 530 nm (purely rotational RS). The ES signal identifies the range of allowable values (RAV) of the coefficients based on the a priori introduction of a physically substantiated lidar ratio. The RS signal at 607 nm, corresponding to a single line of the N2 spectrum, provides a plausible estimate of the ratios in the boundary layer and part of the middle troposphere. The CR signal at 530 nm – a set of N2 and O2 spectrum lines – is characterized by smaller errors and provides a quantitative estimate of the coefficients in all main tropospheric layers. At a wavelength of 530 nm, the differential backscattering cross section depends on height due to temperature changes, which leads to a redistribution of N2 and O2 line intensities. Estimation of parameters from the RS signals is considered plausible when the sought-after coefficients are quantitatively comparable and, at the same time, located within their RAVs. The algorithms is tested using ground-based sensing data on the shore of Lake Baikal in August 2023.

Keywords:

aerosol, lidar, elastic and Raman scattering, optical parameters

Figures:

References:

1. Aerozol' i klimat / pod red. K.Ya. Kondrat'eva. L.: Gidrometeoizdat, 1991. 542 p.
2. Панченко М.В., Кабанов М.В., Пхалагов Ю.А., Белан Б.Д., Козлов В.С., Сакерин С.М., Кабанов Д.М., Ужегов В.Н., Щелканов Н.Н., Полькин В.В., Терпугова С.А., Толмачев Г.Н., Яушева Е.П., Аршинов М.Ю., Симоненков Д.В., Шмаргунов В.П., Чернов Д.Г., Турчинович Ю.С., Полькин Вас.В., Журавлева Т.Б., Насртдинов И.М., Зенкова П.Н. Комплексные исследования тропосферного аэрозоля в ИОА СО РАН (этапы развития) // Оптика атмосф. и океана. 2019. Т. 32, № 9. С. 703–716. DOI: 10.15372/AOO20190904; Panchenko M.V., Kabanov M.V., Pkhalagov Yu.A., Belan B.D., Kozlov V.S., Sakerin S.M., Kabanov D.M., Uzhegov V.N., Shchelkanov N.N., Polkin V.V., Terpugova S.A., Tolmachev G.N., Yausheva E.P., Arshinov M.Yu., Simonenkov D.V., Shmargunov V.P., Chernov D.G., Turchinovich Yu.S., Polkin Vas.V., Zhuravleva T.B., Nasrtdinov I.M., Zenkova P.N. Integrated studies of tropospheric aerosol at the Institute of Atmospheric Optics (development stages) // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 27–41.
3. Belan B.D., Zuev V.E., Panchenko M.V. Osnovnye rezul'taty samoletnogo zondirovaniya aerozolya v IOA SO RAN (1981–1991 years) // Optika atmosf. i okeana. 1995. V. 8, N 1–2. P. 131–156.
4. Panchenko M.V., Belan B.D., Shamanaev V.S. Rol' samoleta-laboratorii IOA SO RAN v izuchenii okruzhayushchei sredy oz. Baikal // Optika atmosf. i okeana. 1997. V. 10, N 4–5. P. 463–472.
5. Panchenko M.V., Zhuravleva T.B., Terpugova S.A., Polkin V.V., Kozlov V.S. An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer // Atmos. Meas. Tech. 2012. V. 5. P. 1513–1527. DOI: 10.5194/amt-5-1513-2012.
6. Panchenko M.V., Zhuravleva T.B. Vertical profiles of optical and microphysical characteristics of tropospheric aerosol from aircraft measurements / A. Kokhanovsky (ed.) // Light Scattering Rev. 2015. P. 199–234. DOI: 10.1007/978-3-662-46762-6.
7. Paris J.-D., Ciais Ph., Nédélec Ph., Stohl A., Belan B.D., Arshinov M.Yu., Carauge C., Golitsyn G., Granberg I.G. New insights on the chemical composition of the Siberian air shed from the YAK-AEROSIB aircraft campaigns // Bull. Am. Meteorol. Soc. 2010. V. 91, N 5. P. 625–641. DOI: 10.1175/2009BAMS2663.1.
8. Belan B.D., Ancellet G., Andreeva I.S., Antokhin P.N., Arshinova V.G., Arshinov M.Y., Balin Y.S., Barsuk V.E., Belan S.B., Chernov D.G., Davydov D.K., Fofonov A.V., Ivlev G.A., Kotel’nikov S.N., Kozlov A.S., Kozlov A.V., Law K., Mikhal’chishin A.V., Moseikin I.A., Nasonov S.V., Nédélec P., Okhlopkova O.V., Ol’kin S.E., Panchenko M.V., Paris J.-D., Penner I.E., Ptashnik I.V., Rasskazchikova T.M., Reznikova I.K., Romanovskii O.A., Safatov A.S., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Yakovlev S.V., Zenkova P.N. Integrated airborne investigation of the air composition over the Russian sector of the Arctic // Atmos. Meas. Tech. 2022. V. 15. P. 3941–3967. DOI: 10.5194/amt-15-3941-2022.
9. Narbaud C., Paris J.-D., Wittig S., Berchet A., Saunois M., Nédélec Ph., Belan B.D., Arshinov M.Yu., Belan S.B., Davydov D., Fofonov A., Kozlov A. Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements // Atmos. Chem. Phys. 2023. V. 23. P. 2293–2314. DOI: 10.5194/acp-23-2293-2023.
10. Sawamura P., Moore R.H., Burton S.P., Chemyakin E., Müller D., Kolgotin A., Ferrare R.A., Hostetler Ch.A., Ziemba L.D., Beyersdorf A.J., Anderson B.E. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: An intercomparison study // Atmos. Chem. Phys. 2017. V. 17. P. 7229–7243. DOI: 10.5194/acp-17-7229-2017.
11. Lopatin A., Dubovik O., Fuertes D., Stenchikov G., Lapyonok T., Veselovskii I., Wienhold F.G., Shevchenko I., Hu Q., Parajuli S. Synergy processing of diverse ground-based remote sensing and in situ data using the GRASP algorithm: Applications to radiometer, lidar, and radiosonde observations // Atmos. Meas. Tech. 2021. V. 14. P. 2575–2614. DOI: 10.5194/amt-14-2575-2021.
12. Di Giloramo P., De Rosa B., Summa D., Franco N., Veselovskii I. Measurements of aerosol size and microphysical properties: A comparison between Raman lidar and airborne sensors // J. Geophys. Res.: Atmos. 2022. V. 127. P. 1–18. DOI: 10.1029/2021JD036086.
13. Fiocco G., Grams G. Observations of the aerosol layer at 20 km by optical radar // J. Atmos. Sci. 1964. V. 21. P. 323–324. DOI: 10.1175/1520-0469(1964)021<0323:ootala>2.0.co;2.
14. Bösenberg J., Ansmann A., Baldasano J.M., Balis D., Böckmann C., Calpini B., Chaikovsky A., Flamant P., Hågård A., Mitev V., Papayannis A., Pelon J., Resendes D., Schneider J., Spinelli N., Trickl T., Vaughan G., Visconti G., Wiegner M. EARLINET: A European aerosol research lidar network // Advances in Laser Remote Sensing / A. Dabas, C. Loth, J. Pelon (eds.). Editions de L’Ecole Polytechnique, 2000. P. 155–158.
15. Murayama T., Sugimoto N., Uno I., Kinoshita K., Aoki K., Hagiwara N., Liu Z., Matsui I., Sakai T., Shibata T., Arao K., Sohn B.-J., Won J.-G., Yoon S.-C., Li T., Zhou J., Hu H., Abo M., Iokibe K., Koga R., Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in east Asia // J. Geophys. Res. 2001. V. 106. P. 18345–18359. DOI: 10.1029/2000JD900554.
16. Chaikovsky A.P., Ivanov A.P., Balin Yu.S., Elnikov A.V., Tulinov G.F., Plusnin I.I., Bukin O.A., Chen B.B. CIS-LINET – LIdar NETwork for monitoring aerosol and ozone in CIS regions // Reviewed and Revised Papers Presented at the 23d ILRC / C. Nagasava, N. Sugimoto (eds.). Nara, Japan, 2006. P. 671–672.
17. Hair J.W., Hostetler C.A., Cook A.L., Harper D.B., Ferrare R.A., Mack T.L. Airborne high spectral resolution lidar for profiling aerosol optical properties // Appl. Opt. 2008. V. 47. P. 6734–6752. DOI: 10.1364/AO.47.006734.
18. Ansmann A., Riebesell M., Weitkamp C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar // Opt. Lett. 1990. V. 15. P. 746–748.
19. Matthias V., Bosenberg J., Freudenthaler V., Amodeo A., Balis D., Chaikovsky A., Chourdakis G., Comeron A., Delaval A., De Tomasi F., Eixmann R., Hågård A., Komguem L., Kreipl S., Matthey R., Mattis I., Rizi V., Rodriguez J.A., Simeonov V., Wang X. Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments // Appl. Opt. 2004. V. 43. P. 961–976. DOI: 10.1364/AO.43.000961.
20. Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., De Tomasi F., Frioud M., Hågård A., Horvat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadembosch F., Rodriguez J.A., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
21. Pappalardo G., Amodeo A., Pandolfi M., Wandinger U., Ansmann A., Bösenberg J., Matthias V., Amiridis V., De Tomasi F., Frioud M., Iarlori M., Komguem L., Papayannis A., Rocadenbosch F., Wang X. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio // Appl. Opt. 2004. V. 43, N 28. P. 5370–5385. DOI: 10.1364/AO.43.005370.
22. Shcherbakov V. Regularized algorithm for Raman lidar data processing // Appl. Opt. 2007. V. 46. P. 4879–4889. DOI: 10.1364/ao.46.004879.
23. Samoilova S.V., Balin Yu.S. Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar // Appl. Opt. 2008. V. 47, N 36. P. 6816–6831. DOI: 10.1364/ao.47.006816.
24. Arshinov Yu.F., Bobrovnikov S.M., Zuev V.E., Mitev V.M. Atmospheric temperature measurements using a pure rotational Raman lidar // Appl. Opt. 1983. V. 22, N 19. P. 2984–2990.
25. Arshinov Yu.F., Bobrovnikov S.M. Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules // Appl. Opt. 1999. V. 38, N 21. P. 4635–4638.
26. Vaughan G., Wareing D.P., Pepler S.J., Thomas L., Mitev V. Atmospheric temperature measurements made by rotational Raman scattering // Appl. Opt. 1993. V. 32, N 15. P. 2758–2764.
27. Volkov S.N., Kaul' B.V. Metodika opredeleniya koeffitsientov obratnogo rasseyaniya i oslableniya sveta v aerozol'nykh sloyakh troposfery lidarom, rabotayushchim na chastotakh uprugogo i kombinatsionnogo rasseyaniya sveta // Optika atmosf. i okeana. 1994. V. 7, N 11–12. P. 1592–1600.
28. Veselovskii I., Whiteman D.N., Korenskiy M., Suvorina A., Pérez-Ramírez D. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction // Atmos. Meas. Tech. 2015. V. 8. P. 4111–4122. DOI: 10.5194/amt-8-4111-2015.
29. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Colarco P., Korenski M., da Silva A. Retrievals of aerosol single-scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns // Remote Sens. Environ. 2019. V. 222. P. 144–164. DOI: 10.1016/j.rse.2018.12.022.
30. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Korenskiy M., Colarco P., Da Silva A. Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar // J. Quant. Spectrosc. Radiat. 2020. V. 246. P. 106932. DOI: 10.1016/j.jqsrt.2020.106932.
31. Popovicheva O., Molozhnikova E., Nasonov S., Potemkin V., Penner I., Klemasheva M., Marinaite I., Golobokova L., Vratolis S., Eleftheriadis K., Khodzer T. Industrial and wildfire aerosol pollution over world heritage Lake Baikal // J. Environ. Sci. 2021. V. 107. DOI: 10.1016/j.jes.2021.01.011.
32. Balin Yu.S., Ershov A.D. Lidarnye issledovaniya vertikal'noi struktury aerozol'nykh polei v atmosfere oz. Baikal // Optika atmosf. i okeana. 2000. V. 13, N 6–7. P. 633–638.
33. Balin Yu.S., Klemasheva M.G., Kokhanenko G.P., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Modernizatsiya lidara «LOZA-A2» dlya odnovremennogo izmereniya kolebatel'no-vrashchatel'nogo i chisto vrashchatel'nogo spektrov kombinatsionnogo rasseyaniya // Optika atmosf. i okeana. 2023. V. 36, N 8. P. 687–694. DOI: 10.15372/AOO2023809; Balin Yu.S., Klemasheva M.G., Kokhanenko G.P., Nasonov S.V., Novoselov M.M., Samoilova S.V., Penner I.E. Modernization of the LOZA-A2 lidar for simultaneous measurements of vibrational-rotational and purely rotational Raman spectra // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 810–815.
34. Ackerman J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study // Atmos. Ocean. Tech. 1998. V. 15. P. 1043–1050.
35. Müller D., Ansmann A., Mattis I., Tesche M., Wandinger U., Althausen D., Pisani G. Aerosol-type-dependent lidar ratios observed with Raman lidar // J. Geophys. Res. 2007. V. 112. D16202. DOI: 10.1029/2006JD008292.
36. Fernald F.G. Analysis of atmospheric lidar observations: Some comments // Appl. Opt. 1984. V. 23. P. 1609–1613.
37. Sibirskaya lidarnaya stantsiya: apparatura i rezul'taty / pod red. G.G. Matvienko. Tomsk: Izd-vo IOA SO RAN, 2016. 292 p.
38. Whiteman D.N. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations // Appl. Opt. 2003. V. 42. P. 2571–2592. DOI: 10.1364/AO.42.002571.
39. Pappalardo G., Amodeo A., Apituley A., Comeron A., Freudenthaler V., Linné H., Ansmann A., Bösenberg J., DAmico G., Mattis I., Mona L., Wandinger U., Amiridis V., Alados-Arboledas L., Nicolae D., Wiegner M. EARLINET: Towards an advanced sustainable European aerosol lidar network // Atmos. Meas. Tech. 2014. V. 7. P. 2389–2409. DOI: 10.5194/amt-7-2389-2014.
40. D’Amico G., Amodeo A., Baars H., Binietoglou I., Freudenthaler V., Mattis I., Wandinger U., Pappalardo G. EARLINET single calculus chain – overview on methodology and strategy // Atmos. Meas. Tech. 2015. V. 8. P. 4507–4520. DOI: 10.5194/amt-8-4507-2015.