Vol. 37, issue 11, article # 9

Kruglinsky I. A., Kabanov D. M., Sakerin S. M. Estimates of the frequency of synoptic variations in aerosol characteristics in the Arctic atmosphere and the contribution of various pollutants to anomalously high aerosol concentrations. // Optika Atmosfery i Okeana. 2024. V. 37. No. 11. P. 962–969. DOI: 10.15372/AOO20241109 [in Russian].
Copy the reference to clipboard

Abstract:

The periodicity of synoptic-scale variations in aerosol characteristics in the atmosphere of Eurasian sector of the Arctic Ocean is analyzed on the basic of long-term measurements. Statistically significant maxima of amplitude functions in the range from 3.5 to 18 days were manifested in periodograms of the concentrations of submicron aerosol and black carbon (Vf and еВС). Cases of anomalously high еВС and Vf (5% of data), associated with long-range transports of continental pollutants, were considered in more detail. It is shown that the average duration of “anomalies” in еВС and Vf is few days, and the maximal duration attains 112 hours. The time intervals between “anomalies” are, on the average, 6–16 days, and the maximal intervals are from 28 to 69 days. Despite the short duration and rare occurrence of anomalous situations, they increase the average concentrations of aerosol and black carbon by 28–77%. Calculations showed that the major (79%) contributors to air pollution over the Kara and Barents Seas are made by the outflows of anthropogenic pollutants; and in the eastern sector of the Arctic Ocean, the contribution of smokes from wildfires is maximal. The effect of the products of associated gas combustion at gas-oil plants was manifested most strongly (up to 51%) in the atmosphere of Cape Baranov.

Keywords:

atmosphere over the ocean, black carbon, aerosol, Arctic, atmospheric pollution

Figures:

References:

1. Kondratyev K.Ya., Ivlev L.S., Krapivin V.F., Varotsos C.A. Atmospheric aerosol properties, formation processes, and impacts: From nano- to global scales. Chichester, United Kingdom: Springer /PRAXIS, 2006. 572 р.
2. Stohl A. Characteristics of atmospheric transport into the Arctic troposphere // J. Geophys. Res. 2006. V. 111, N D11306. DOI: 10.1029/2005JD006888.
3. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118. P. 5380–5552. DOI: 10.1002/jgrd.50171.
4. IPCC, 2021: Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. P. 1–41.
5. Sand M., Berntsen T.K., von Salzen K., Flanner M.G., Langner J., Victor D.G. Response of Arctic temperature to changes in emissions of short-lived climate forcers // Nat. Clim. Change. 2015. N 11. DOI: 10.1038/NCLIMATE2880.
6. Willis M.D., Leaitch R.W., Abbatt J.P.D. Processes controlling the composition and abundance of Arctic aerosol // Rev. Geophys. 2018. V. 56, N 4. P. 621–671. DOI: 10.1029/2018RG000602.
7. Stohl A., Klimont Z., Eckhardt S., Kupiainen K., Shevchenko V.P., Kopeikin V.M., Novigatsky A.N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions // Atmos. Chem. Phys. 2013. V. 13. P. 8833–8855. DOI: 10.5194/acp-13-8833-2013.
8. Xing J., Bian L., Hu Q., Yu J., Sun C., Xie Z. Atmospheric black carbon along a cruise path through the Arctic Ocean during the Fifth Chinese Arctic Research Expedition // Atmosphere. 2014. V. 5. P. 292–306. DOI: 10.3390/atmos5020292.
9. Shevchenko V.P., Kopeikin V.M., Novigatsky A.N., Malafeev G.V. Black carbon in the atmospheric boundary layer over the North Atlantic and the Russian Arctic seas in June–September 2017 // Oceanology. 2019. V. 59, N 5. P. 692–696. DOI: 10.1134/S0001437019050199.
10. Park J., Dall’Osto M., Park K., Gim Y., Kang H.J., Jang E., Park K.-T., Park M., Yum S.S., Jung J., Lee B.Y., Yoon Y.J. Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties // Atmos. Chem. Phys. 2020. V. 20, N 5. P. 5573–5590. DOI: 10.5194/acp-20-5573-2020.
11. Sakerin S.M., Kabanov D.M., Kopeikin V.M., Kruglinsky I.A., Novigatsky A.N., Shevchenko V.P., Turchinovich Yu.S. Spatial distribution of atmospheric black carbon in the Eurasian sector of the Arctic Ocean from 28 marine expeditions (2007–2022) // Atmos. Pollut. Res. 2023. V. 14. P. 101885. DOI: 10.1016/j.apr.2023.101885.
12. Sakerin S.M., Kabanov D.M., Makarov V.I., Polkin V.V., Popova S.A., Chankina O.V., Pochufarov A.O., Radionov V.F., Rize D.D. Spatial distribution of atmospheric aerosol physicochemical characteristics in Russian sector of the Arctic Ocean // Atmosphere. 2020, V. 11, N 11. P. 1170. DOI: 10.3390/atmos11111170.
13. Kabanov D.M., Kruglinskii I.A., Pochufarov A.O., Sakerin S.M., Sidorova O.R., Turchinovich Yu.S. Prostranstvennoe raspredelenie i srednie kharakteristiki atmosfernogo aerozolya v akvatorii Karskogo morya // Optika atmosfery i okeanа. 2024. V. 37. N 1. P. 77–83. DOI: 10.15372/AOO20240110.
14. Sakerin S.M., Kruglinsky I.A., Kabanov D.M., Kalashnikova D.A., Kravchishina M.D., Makarov V.I.., Popova S.A., Pochufarov A.O., Simonova G.V., Turchinovich Yu.S., Darin F.A. Prostranstvenno-vremennaya izmenchivost' kharakteristik atmosfernogo aerozolya nad Karskim, Barentsevym, Norvezhskim i Grenlandskim moryami (ekspeditsii 2018–2021 years) // Optika atmosfery i okeanа. 2022. V. 35, N 6. P. 447–455. DOI: 10.15372/AOO20220603; Sakerin S.M., Kruglinsky I.A., Kabanov D.M., Kalashnikova D.A., Kravchishina M.D., Makarov V.I., Popova S.A., Pochufarov A.O., Simonova G.V., Turchinovich Yu.S., Darin F.A. Darin spatiotemporal variations in atmospheric aerosol characteristics over the Kara, Barents, Norwegian, and Greenland Seas (2018–2021 expeditions) // Atmos. Ocean. Opt. 2022. V. 34, N 6. P. 651–660.
15. Kabanov D.M., Maslovsky A.S., Radionov V.F., Sakerin S.M., Chernov D.G., Sidorova O.R. Sezonnaya i mezhgodovaya izmenchivost' kharakteristik aerozolya po dannym mnogoletnikh (2011–2021 years) izmerenii v Rossiiskom nauchnom tsentre na arkhipelage Shpitsbergen // Optika atmosfery i okeanа. 2023. V. 36, N 6. P. 433–442. DOI: 10.15372/AOO20230602; Kabanov D.M., Maslovsky A.S., Radionov V.F., Sakerin S.M., Sidorova O.R., Chernov D.G. Seasonal and interannual variability of aerosol characteristics according to the data of long-term (2011–2021) measurements at the Russian Scientific Center on the Spitzbergen Archipelago // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 645–654.
16. Sakerin S.M., Kabanov D.M., Loskutova M.A., Rize D.D., Chernov D.G., Turchinovich Yu.S. Kharakteristiki aerozolya na nauchno-issledovatel'skom statsionare «Ledovaya baza Mys Baranova» v 2018–2023 years // Problemy Arktiki i Antarktiki. 2023. V.  69, N 4. P.  421–434. DOI: 10.30758/0555-2648-2023-69-4-421-434.
17. Physics and Chemistry of the Arctic Atmosphere / A. Kokhanovsky, C. Tomasi (eds.). Springer, 2020. 717 p. DOI: 10.1007/978-3-030-33566-3.
18. Asmi E., Kondratyev V., Brus D., Laurila T., Lihavainen H., Backman J., Vakkari V., Aurela M., Hatakka J., Viisanen Y., Uttal T., Ivakhov V., Makshtas A. Aerosol size distribution seasonal characteristics measured in Tiksi, Russian Arctic // Atmos. Chem. Phys. 2016. V. 16. P. 1271–1287. DOI: 10.5194/acp-16-1271-2016.
19. Xian P., Zhang J., O’Neill N.T, Toth T.D., Sorenson B., Colarco P.R., Kipling Z., Hyer E.J., Campbell JR., Reid J.S., Ranjbar K. Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend // Atmos. Chem. Phys. 2022. V. 15, N 22. P. 9915–9947. DOI: 10.5194/acp-22-9915-2022.
20. Cheng M.-D. Geolocating Russian sources for Arctic black carbon // Atmos. Environ. 2014. V. 92, N 4. P. 398–410. DOI: 10.1016/j.atmosenv.2014.04.031.
21. Huang K., Fu J.S., Prikhodko V.Y., Storey J.M., Romanov A., Hodson E.L., Cresko J., Morozova I., Ignatieva Y., Cabaniss J. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation // J. Geophys. Res.: Atmos. 2015. V. 120, N 11. P. 306–333. DOI: 10.1002/2015JD023358.
22. Виноградова А.А., Пономарева Т.Я. Atmosfernyi perenos antropogennykh primesei v arkticheskie raiony Rossii (1986–2010) // Optika atmosfery i okeanа. 2012. V. 25, N 6. P. 475–483; Vinogradova A.A., Ponomareva T.Ya. Atmospheric transport of anthropogenic impurities to the Russian Arctic (1986–2010) // Atmos. Ocean. Opt. 2012. V. 25, N 6. P. 414–422.
23. Vinogradova A.A., Vasil'ev A.V., Ivanova Yu.A. Zagryaznenie vozdukha chernym uglerodom v raione o-va Vrangelya: sravnenie istochnikov i vkladov territorii Evrazii i Severnoi Ameriki // Optika atmosfery i okeanа. 2020. V. 33, N 12. P. 907–912. DOI: 10.15372/AOO20201201; Vinogradova A.A., Vasileva A.V., Ivanova Yu.A. Air pollution by black carbon in the region of Wrangel Island: Comparison of Eurasian and American sources and their contributions // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 97–103.
24. Kruglinsky I.A., Kabanov D.M., Pol’kin V.V., Sakerin S.M., Popova S.A. Estimates of how different types (sources) of continental pollutants influence the Arctic atmosphere // Proc. SPIE. 12780. 2023.DOI: 10.1117/12.2690459.
25. Semenchenko B.A. Fizicheskaya meteorologiya. M.: Aspekt press, 2002. 415 p.
26. Kozlov V.S., Shmargunov V.P., Panchenko M.V. Modified aethalometer for monitoring of black carbon concentration in atmospheric aerosol and technique for correction of the spot loading effect // Proc. SPIE. 2016. P. 1003530. DOI: 10.1117/12.2248009.
27. AZ-10 schetchik chastits aerozol'nykh perenosnoi. [G. M.], 2024. URL: https://gazoanalit.ru/catalog/perenosnye1/schetchik-chastits-az-10/ (last access: 27.06.2024)
28. Khutorova O.G., Khutorov V.E., Korchagin G.E. Parametry volnovykh protsessov po dannym seti priemnikov sputnikovykh navigatsionnykh sistem // Optika atmosfery i okeanа. 2021. V. 34, N 6. P. 458–462. DOI: 10.15372/AOO20210612; Khutorova O.G., Khutorov V.E., Korchagin G.E. Parameters of wave processes from GNSS data // Atmos. Ocean. Opt. 2022. V. 35, N 1. P. 52–56.
29. Air Resources Laboratory–HYSPLIT. URL: https://ready.arl.noaa.gov/HYSPLIT.php (last access: 02.02.2023).
30. Fire Information for Resource Management System. URL: Available online: https: //firms.modaps.eosdis.nasa.gov (last access: 02.02.2023).
31. Ministerstvo prirodnykh resursov i ekologii Rossiiskoi Federatsii. URL: https: //2020.ecologygosdoklad.ru/doklad/o-doklade (last access: 02.02.2023).
32. Empowering the World to Breathe Cleaner Air. URL: https://www.iqair.com/ (last access: 02.02.2023).
33. Shaw G.E. The Arctic haze phenomenon // Bull. Amer. Meteor. Soc. 1995. V. 76, N 12. P. 2403–2414. DOI: 10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2.
34. Quinn P., Shaw G., Andrews E., Dutton E.G., Ruoho-Airola T., Gong S.L. Arctic haze: Current trends and knowledge gaps // Tellus B: Chem. Phys. Meteorol. 2007. V. 59, N 1. P. 99–114. DOI: 10.1111/j.1600-0889.2006.00238.x.