Vol. 37, issue 11, article # 3

Banakh V. A., Smalikho I. N., Zaloznaya I. V. Experimental verification of the model dependence of the turbulent Prandtl number on the gradient Richardson number. // Optika Atmosfery i Okeana. 2024. V. 37. No. 11. P. 918–923. DOI: 10.15372/AOO20241103 [in Russian].
Copy the reference to clipboard

Abstract:

A formula has been derived which connects the structural constant of temperature fluctuations with the dissipation rate of the kinetic energy of turbulence not through the turbulent thermal diffusivity, but through the vertical gradients of average wind speed and air temperature and the turbulent Prandtl number. To estimate the structural characteristics of temperature using this formula, we suggest a model based on the generalization of known data on the turbulent Prandtl number as a function of the gradient Richardson number. It has been experimentally shown that the time series of the structural constant of temperature, which is calculated using the proposed formula and independently found from the spectra of temperature fluctuations based on measurements of wind speed and air temperature with sonic anemometers at two altitudes, are consistent with each other. This confirms the correctness of the theoretical constructions, which serve the basic for the model dependence of the turbulent Prandtl number on the gradient Richardson number.

Keywords:

structural constant of temperature fluctuations, dissipation rate of the kinetic energy of turbulence, turbulent Prandtl number, gradient Richardson number

Figures:

References:

1. Monin A.S., Obukhov A.M. Osnovnye zakonomernosti turbulentnogo peremeshivaniya v prizemnom sloe atmosfery // Trudy Geofiz. in-ta AN SSSR. 1954. V. 151, N 24. P. 163–187.
2. Obukhov A.M. Turbulentnost' v temperaturno-neodnorodnoi atmosfere // Trudy In-ta teoret. geofiz. 1946. V. 1. P. 95–115.
3. Li D. Turbulent Prandtl number in the atmospheric boundary layer – where are we now? // Atmos. Res. 2019. N 216. P. 86–105.
4. Grachev A.A., Andreas E.L., Fairall C.W., Guest P.S., Persson P.O.G. The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer // Bound.-Layer Meteorol. 2013. V. 147. P. 51–82. DOI: 10.1007/s10546-012-9771-0.
5. Zilitinkevich S.S., Elperin T., Kleeorin N., Rogachevskii I., Esau I.N. A hierachy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows // Bound.-Layer Meteorol. 2013. V. 146. P. 341–373. DOI: 10.1007/s10546-012-9768-8.
6. Kurbatskii A.F., Kurbatskaya L.I. O turbulentnom chisle Prandtlya v ustoichivo stratifitsirovannom atmosfernom pogranichnom sloe // Izv. RAN. Fiz. atmosf. i okeana. 2010. V. 46, N 2. P. 187–196.
7. Kurbatskaya L.I. Eddy mixing, gravity waves and the intermittent turbulence in atmospheric flows under stronger stratification // AIP Conf. Proc. 2021. V. 2351. P. 040008-1–10. DOI: 10.1063/5.0052012.
8. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
9. Stull R.B. An Introduction to Boundary Layer Meteorology. Dordrecht; Boston; London: Kluwer Academic Publishers, 1988. 666 p.
10. Li D., Katul G.G., Zilitinkevich S.S. Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer // J. Atmos. Sci. 2015. V. 72. P. 2394–2410. DOI: 10.1175/JAS-D-14-0335.1.
11. Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F. Flux-profile relationships in the atmospheric surface layer // J. Atmos. Sci. 1971. V. 28. P. 181–191. DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0. CO;2.
12. Li D., Katul G., Bou-Zeid E. Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer // Phys. Fluid. 2012. V. 24, N 10. P. 105105. DOI: 10.1063/1.4757660.
13. Banakh V.A., Smalikho I.N. Refraktsiya lazernogo puchka na prizemnykh trassakh // Optika atmosf. i okeana. 1998. V. 11, N 7. P. 694–699.
14. Kantha L., Luce H. Mixing coefficient in stably stratified flows // J. Phys. Oceanogr. 2018. V. 48. P. 2649–2665. DOI: 10.1175/JPO-D-18-0139.1.
15. Banakh V.A., Smalikho I.N., Gordeev E.V., Sukharev A.A., Falits A.V. Opredelenie parametrov turbulentnosti stratifitsirovannogo pogranichnogo sloya atmosfery s ispol'zovaniem sredstv distantsionnogo zondirovaniya // Optika atmosf. i okeana. 2024. V. 37, N 10. P. 830–834.
16. Banakh V.A., Falits A.V., Sherstobitov A.M., Smalikho I.N., Sukharev A.A., Gordeev E.V., Zaloznaya I.V. Ob otsenivanii vysoty sloya turbulentnogo peremeshivaniya iz vysotno-vremennykh raspredelenii chisla Richardsona // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 912–917. DOI: 10.15372/AOO20221106; Banakh V.A., Falits A.V., Sherstobitov A.M., Smalikho I.N., Sukharev A.A., Gordeev E.V., Zaloznaya I.V. On estimation of the turbulent mixing layer altitude from the altitude-time distributions of the Richardson number // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 30–40.