Vol. 37, issue 11, article # 4
Copy the reference to clipboard
Abstract:
Air pollution is a serious danger not only to human health, but also to the environment. The study of the carbon isotope composition of atmospheric aerosol in cities is of particular interest and has great potential for determining the dominant sources of aerosol particles. The results of continuous monitoring of the isotopic composition of total carbon (δ13C) in atmospheric aerosol (with a resolution of 3 days) during the winter-spring season (November 2020 – May 2021) in Tomsk are presented. The δ13С value ranged from -29.4 to -24.7‰, with the carbon percentage ranging from 1.3 to 35%. For 67 samples of carbonaceous atmospheric aerosol, the mean δ13С value was -26.2 ± 0.3‰. The average δ13С values of aerosol were -25.9 ± 0.5‰ in winter and -26.5 ± 1‰ in spring. The widest scatter of δ13С values was observed during the spring, which indicates the presence of various sources of origin of carbonaceous aerosol particles. The main sources of carbonaceous aerosol particles were identified through the combined analysis of global map of wind (earth.nullschool.net), air masses backward trajectories (by NOAA HYSPLIT model), wind rose, and data on the variability of δ13C values. In winter, the dominant source of carbonaceous aerosol was the city thermal power plant GRES-2. The study results not only contribute to understanding the sources of origin and transformation processes of atmospheric aerosols in Tomsk, but also can be input parameters for modeling the transport of aerosol particles on the regional scale.
Keywords:
isotope ratio mass spectrometry, atmospheric aerosol, stable carbon isotope ratios
Figures:
References:
1. Shiraiwa M., Li Y., Tsimpidi A.P., Karydis V.A., Berkemeier T., Pandis S.N., Lelieveld J., Koop T., Pöschl U. Global distribution of particle phase state in atmospheric secondary organic aerosols // Nat. Commun. 2017. V. 8. P. 1–7. DOI: 10.1038/ncomms15002.
2. Li S.W., Chang M., Li H., Cui X.Y., Ma L.Q. Chemical compositions and source apportionment of PM2.5 during clear and hazy days: Seasonal changes and impacts of Youth Summer Olympic Games // Chemosphere. 2020. V. 256. 127163. DOI: 10.1016/j.chemosphere.2020.127163.
3. Liu X., Li X., Bai H., Mu L., Li Y., Zhang D. Stable carbon isotopic compositions and source apportionment of the carbonaceous components in PM2.5 in Taiyuan, China // Atmos. Environ. 2021. V. 261. DOI: 10.1016/j.atmosenv.2021.118601.
4. Bai H., Liu X., Liu X., Zhang C., Mu L., Peng M. Carbon isotope seasonal characteristics of fine carbonaceous aerosol in Jinzhong City, Shanxi Province, China // Atmos. Environ. 2021. V. 246. DOI: 10.1016/j.atmosenv.2020.118164.
5. Gensch I., Kiendler-Scharr A., Rudolph J. Isotope ratio studies of atmospheric organic compounds: Principles, methods, applications and potential // Int. J. Mass Spectrom. 2014. V. 365. P. 206–221. DOI: 10.1016/J.IJMS.2014.02.004.
6. Widory D. Combustibles, fuels and their combustion products: A view through carbon isotopes // Combust. Theor. Model. 2006. V. 10. P. 831–841. DOI: 10.1080/13647830600720264.
7. Górka M., Kosztowniak E., Lewandowska A., Widory D. Carbon isotope compositions and TC/OC/EC levels in atmospheric PM10 from Lower Silesia (SW Poland): Spatial variations, seasonality, sources and implications // Atmos. Pollut. Res. 2020. V. 11. P. 1099–1114. DOI: 10.1016/j.apr.2020.04.003.
8. Major I., Furu E., Varga T., Horváth A., Futó I., Gyökös B., Somodi G., Lisztes-Szabó Z., Jull A.J.T., Kertész Z., Molnár M. Source identification of PM2.5 carbonaceous aerosol using combined carbon fraction, radiocarbon and stable carbon isotope analyses in Debrecen, Hungary // Sci. Total Environ. 2021. V. 782. Article ID: 146520. DOI: 10.1016/j.scitotenv.2021.146520.
9. Ren L., Hu W., Hou J., Li L., Yue S., Sun Y., Wang Z., Li X., Pavuluri C.M., Hou S., Liu C., Kawamura K., Ellam R.M., Fu P. Compound-specific stable carbon isotope ratios of terrestrial biomarkers in urban aerosols from Beijing, China // ACS Earth Space Chem. 2019. V. 3. P. 1896–1904. DOI: 10.1021/acsearthspacechem.9b00113.
10. Kozáková J., Pokorná P., Vodička P., Ondráčková L., Ondráček J., Křůmal K., Mikuška P., Hovorka J., Moravec P., Schwarz J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot // Environ. Sci. Pollut. Res. 2019. V. 26. P. 1675–1692. DOI: 10.1007/s11356-018-3670-y.
11. Lin Y.C., Zhang Y.L., Xie F., Zhang W.Q., Fan M.Y., Lin Z., Rella C.W., Hoffnagle J.A. Development of a monitoring system for semicontinuous measurements of stable carbon isotope ratios in atmospheric carbonaceous aerosols: Optimized methods and application to field measurements // Anal. Chem. 2020. V. 92. P. 14373–14382. DOI: 10.1021/acs.analchem.0c02063.
12. Zimnoch M., Morawski F., Kuc T., Samek L., Bartyzel J., Gorczyca Z., Skiba A., Rozanski K. Summer–winter contrast in carbon isotope and elemental composition of total suspended particulate matter in the urban atmosphere of Krakow, Southern Poland // Nukleonika. 2020. V. 65. P. 181–191. DOI: 10.2478/nuka-2020-0029.
13. Masalaite A., Remeikis V., Zenker K., Westra I., Meijer H.A.J., Dusek U. Seasonal changes of sources and volatility of carbonaceous aerosol at urban, coastal and forest sites in Eastern Europe (Lithuania) // Atmos. Environ. 2020. V. 225. DOI: 10.1016/j.atmosenv.2020.117374.
14. Vodička P., Kawamura K., Schwarz J., Kunwar B., Ždímal V. Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station // Atmos. Chem. Phys. 2019. V. 19. P. 3463–3479. DOI: 10.5194/acp-19-3463-2019.
15. Qi W., Wang G., Dai W., Liu S., Zhang T., Wu C., Li J., Shen M., Guo X., Meng J., Li J. Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in wintertime aerosols of Northwest China // Sci Rep. 2022. V. 12. Article ID: 11266. DOI: 10.1038/s41598-022-15222-6.
16. Ke L., Ding X., Tanner R.L., Schauer J.J., Zheng M. Source contributions to carbonaceous aerosols in the Tennessee Valley region // Atmos. Environ. 2007. V. 41. P. 8898–8923. DOI: 10.1016/j.atmosenv.2007.08.024.
17. Aguilera J., Whigham L.D. Using the 13C/12C Carbon isotope ratio to characterise the emission sources of airborne particulate matter: A review of literature // Isotopes Environ Health Stud. 2018. V. 54. P. 573–587. DOI: 10.1080/10256016.2018.1531854.
18. Garbaras A., Andriejauskienė J., Barisevičiūtė R., Remeikis V. Tracing of Atmospheric aerosol sources using stable carbon isotopes // Lith. J. Phys. 2008. 2008. V. 48, N 3. P. 259–264. DOI: 10.3952/lithjphys.48309.
19. Kawashima H., Haneishi Y. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan // Atmos. Environ. 2012. V. 46. P. 568–579. DOI: 10.1016/j.atmosenv.2011.05.015.
20. Widory D., Roy S., Le Moullec Y., Goupil G., Cocherie A., Guerrot C. The origin of atmospheric particles in Paris: A view through carbon and lead isotopes // Atmos. Environ. 2004. V. 38. P. 953–961. DOI: 10.1016/j.atmosenv.2003.11.001.
21. Cao J., Chow J.C., Tao J., Lee S., Watson J.G., Ho K., Wang G., Zhu C., Han Y. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels // Atmos. Environ. 2011. V. 45. P. 1359–1363. DOI: 10.1016/j.atmosenv.2010.10.056.
22. Kundu S., Kawamura K. Seasonal variations of stable carbon isotopic composition of bulk aerosol carbon from Gosan site, Jeju Island in the East China Sea // Atmos. Environ. 2014. V. 94. P. 316–322. DOI: 10.1016/j.atmosenv.2014.05.045.
23. Stein A.F., Draxler R.R, Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. V. 96. P. 2059–2077. DOI: 10.1175/BAMS-D-14-00110.1.
24. Vodička P., Kawamura K., Schwarz J., Ždímal V. Seasonal changes in stable carbon isotopic composition in the bulk aerosol and gas phases at a suburban site in Prague // Sci. Total Environ. 2022. V. 803. DOI: 10.1016/j.scitotenv.2021.149767.
25. Gorka M., Jędrysek M.-O. δ13C of organic atmospheric dust deposited in Wrocław (SW Poland): Critical remarks on the passive method // Geol. Q. 2008. V. 52. P. 115–126.
26. Agnihotri R., Mandal T.K., Karapurkar S.G., Naja M., Gadi R., Ahammmed Y.N., Kumar A., Saud T., Saxena M. Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean // Atmos. Environ. 2011. V. 45. P. 2828–2835. DOI: 10.1016/j.atmosenv.2011.03.003.
27. Kalashnikova D.A., Markelova A.N., Melkov V.N., Simonova G.V. Isotope composition of the pyrogenic carbon of various origins // Himiya v interesakh ustoichivogo razvitiya. 2016. V. 24, N 4. P. 467–471.
28. Simonova G., Volkov Y., Kozlov V., Shmargunov V., Kalashnikova D. Atmospheric air pollution studies using the isotope mass-spectrometry // Proc. of the 8th International Multidisciplinary Scientific Glocinference, Albena, Bulgaria, July 2–8, 2018. SCEM, 2018. P. 343–348.