Vol. 37, issue 11, article # 8

Shikhovtsev M. Yu., Shikhovtsev A. Yu., Kovadlo P. G., Obolkin V. A., Molozhnikova E. V. Influence of air movement structure on the microphysical properties of the atmosphere over Listvyanka. // Optika Atmosfery i Okeana. 2024. V. 37. No. 11. P. 954–961. DOI: 10.15372/AOO20241108 [in Russian].
Copy the reference to clipboard

Abstract:

At present, the relationship between sulfur dioxide (SO2) concentration and small-scale turbulence within Southern Baikal has been described in a limited volume. The paper presents the results of a study of jet streams and atmospheric turbulence affecting the surface SO2 content over Listvyanka station. The cases are considered when the surface SO2 concentration tends to increase at negative vertical turbulent specific heat fluxes. This occurs against the background of the formation of jet streams within the lower layer of the atmosphere and large vertical shears of the wind speed below the jet formation height. The vertical turbulent specific heat flux in the surface layer of the atmosphere can serve as a key indicator determining the possibility of a positive relationship between the surface SO2 concentration and the total kinetic energy of turbulence. The analysis revealed that the SO2 concentration tends to increase at negative vertical turbulent temperature fluxes against the background of the development of low-level jet streams. In similar situations, but with positive or close to zero temperature flux values, SO2 concentrations usually remain at background levels.

Keywords:

atmosphere, atmospheric aerosol, turbulence, kinetic energy of turbulence, Southern Baikal region

Figures:

References:

1. Sheng J.X., Weisenstein D.K., Luo B.P., Rozanov E., Stenke A., Anet J., Peter T. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation // J. Geophys. Res.: Atmos. 2015. V. 120, N 1. P. 256–276. DOI: 10.1002/2014JD021985.
2. Porter J.G., De Bruyn W., Saltzman E.S. Eddy flux measurements of sulfur dioxide deposition to the sea surface // Atmos. Chem. Phys. 2018. V. 18. P. 15291–15305. DOI: 10.5194/acp-18-15291-2018.
3. Gordon M., Blanchard D., Jiang T., Makar P.A., Staebler R.M., Aherne J., Zhang X. High sulfur dioxide deposition velocities measured with the flux–gradient technique in a boreal forest in the Alberta Oil Sands Region // Atmos. Chem. Phys. 2023. V. 23, N 13. P. 7241–7255. DOI: 10.5194/acp-23-7241-2023.
4. Liu M., Hoffmann L., Griessbach S., Cai Z., Heng Y., Wu X. Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: A case study with MPTRAC v2.4 // Geosci. Model Develop. 2023. V. 16, N 17. P. 5197–5217. DOI: 10.5194/gmd-16-5197-2023.
5. Zayakhanov A.S., Zhamsueva G.S., Tsydopov V.V., Bal'zhanov T.S. Vliyanie dinamicheskikh protsessov na variatsii ozona i drugikh malykh gazovykh primesei vblizi beregovoi zony ozera Baikal // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 505–511. DOI: 10.15372/AOO20150602.
6. Makukhin V.L., Obolkin V.A., Potemkin V.L., Latysheva I.V., Khodzher T.V. Otsenki prostranstvennogo raspredeleniya malykh gazovykh primesei nad akvatoriei ozera Baikal v letnii period s pomoshch'yu polevykh izmerenii i rezul'tatov matematicheskogo modelirovaniya // Izv. Irkut. gos. un-ta. Seriya: Nauki o Zemle. 2016. V. 18. P. 69–80.
7. Latysheva I.V., Ivanova A.S., Makukhin V.L., Mordvinov V.I. Vliyanie meteorologicheskikh uslovii na protsessy rasprostraneniya i transformatsii aerozol'nykh i gazovykh komponentov v regione ozera Baikal // Optika atmosf. i okeana. 2004. V. 17, N 4. P. 322–324.
8. Duarte H.F., Leclerc M.Y., Zhang G., Durden D., Kurzeja R., Parker M., Werth D. Impact of nocturnal low-level jets on near-surface turbulence kinetic energy // Bound.-Lay. Meteorol. 2015. V. 156, N 3. P. 349–370. DOI: 10.1007/s10546-015-0030-z.
9. Wei W., Zhang H., Cai X., Song Y., Bian Y., Xiao K., Zhang H. Influence of intermittent turbulence on air pollution and its dispersion in winter 2016/2017 over Beijing, China // J. Meteorol. Res. 2020. V. 34, N 1. P. 176–188. DOI: 10.1007/s13351-020-9128-4.
10. Banakh V.A., Sukharev A.A., Falits A.V., Gordeev E.V., Zaloznaya I.V. Estimation of the Richardson number in the atmospheric boundary layer using data from temperature radiometer and Doppler lidar // Proc. SPIE. 2020. V. 11560. P. 1575–1580. DOI: 10.1117/12.2575597.
11. Obolkin V.A., Shamanskii Yu.V., Khodzher T.V., Falits A.V. Mezomasshtabnye protsessy perenosa atmosfernykh zagryaznenii v raione YUzhnogo Baikala // Okeanologicheskie issledovaniya. 2019. V. 47, N 3. P. 104–113. DOI: 10.29006/1564-2291.JOR-2019.47(3).9.
12. Banakh V.A., Smalikho I.N. Lidar studies of wind turbulence in the stable atmospheric boundary layer // Remote Sens. 2018. V. 10, N 8. P. 1219–2030. DOI: 10.3390/rs10081219.
13. Balin Yu.S., Ershov A.D., Penner I.E. Lidarnye korabel'nye issledovaniya aerozol'nykh poleĭ v atmosfere oz. Baĭkal // Optika atmosf. i okeana. 2003. V. 16, N 5. P. 438–446.
14. Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modelling system for trajectories // Australian Meteorol. Mag. 1998. V. 47, N 4. P. 295–308.
15. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248. DOI: 10.5194/amt-9-5239-2016.
16. Kokhanenko G.P., Balin Y.S., Penner I.E., Shamanaev V.S. Lidarnye i in situ izmereniya opticheskikh parametrov poverkhnostnykh sloev vody v ozere Baikal // Optika atmosf. i okeana. 2011. V. 24, N 5. P. 377–385; Kokhanenko G.P., Balin Y.S., Penner I.E., Shamanaev V.S. Lidar and in situ measurements of the optical parameters of water surface layers in Lake Baikal // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 478–486. DOI: 10.1134/S1024856011050083.
17. Zayakhanov A.S., Zhamsueva G.S., Tsydypov V.V., Balzhanov T.S., Balin Y.S., Penner I.E., Nasonov S.V. Osobennosti perenosa i transformatsii aerozol'nykh i gazovykh primesei atmosfery v beregovoi zone oz. Baikal // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 968–973. DOI: 10.15372/AOO20181205; Zayakhanov A.S., Zhamsueva G.S., Tsydypov V.V., Balzhanov T.S., Balin Y.S., Penner I.E., Nasonov S.V. Specific features of transport and transformation of atmospheric aerosol and gas admixtures in the coastal zone of Lake Baikal // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 158–164.
18. Nasonov S., Balin Y., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Study of atmospheric aerosol in the Baikal mountain basin with shipborne and ground-based lidars // Remote Sens. 2023. V. 15, N 15. P. 3816. DOI: 10.3390/rs15153816.
19. Nasonov S., Balin Y., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Peculiarities of the vertical structure of atmospheric aerosol fields in the basin of Lake Baikal according to lidar observations // Atmosphere. 2023. V. 14, N 5. P. 837. DOI: 10.3390/atmos14050837.
20. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Thépaut J. N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
21. Hoffmann L., Günther G., Li D., Stein O., Wu X., Griessbach S., Wright J.S. From ERA-Interim to ERA5: The considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations // Atmos. Chem. Phys. 2019. V. 19, N 5. P. 3097–3124. DOI: 10.5194/acp-19-3097-2019.
22. Shikhovtsev A.Yu. Metod opredeleniya kharakteristik opticheskoi turbulentnosti po luchu zreniya astronomicheskogo teleskopa // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 74–80. DOI: 10.15372/AOO20220111; Shikhovtsev A.Yu. A method of determining optical turbulence characteristics by the line of sight of an astronomical telescope // Atmos. Ocean. Opt. 2022. V. 35, N 3. P. 303–309.
23. Banakh V., Smalikho I. Lidar study of wind turbulence, low level jet streams, and atmospheric internal waves in the boundary layer of atmosphere // EPJ Web Conf. 2018. V. 176, N 06005. DOI: 10.1051/epjconf/201817606005.
24. Banakh V.A., Smalikho I.N., Falits A.V. Wind–temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study // Remote Sens. 2020. V. 12, N 6. P. 955. DOI: 10.3390/rs12060955.
25. Shikhovtsev M.Yu., Obolkin V.A., Khodzher T.V., Molozhnikova Ye.V. Izmenchivost' prizemnoi kontsentratsii tverdykh chastits PM1–PM10 v vozdushnom basseine yuzhnogo Pribaikal'ya // Optika atmosf. i okeana. 2023. V. 36, N 6. P. 448–454. DOI: 10.15372/AOO20230604; Shikhovtsev M.Yu., Obolkin V.A., Khodzher T.V., Molozhnikova Ye.V. Variability of the ground concentration of particulate matter PM1–PM10 in the air basin of the Southern Baikal Region // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 655–662.
26. Shikhovtsev A.Y. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site // Publ. Astron. Soc. Japan. 2024. P. 31. DOI: 10.1093/pasj/psae031.
27. Yang B., Finn D., Rich J., Gao Z., Liu H. Effects of low-level jets on near surface turbulence and wind direction changes in the nocturnal boundary layer // J. Geophys. Res.: Atmos. 2023. V. 128, N 11. P. E2022JD037657. DOI: 10.1029/2022JD037657.
28. Liu H., He M., Wang B., Zhang Q. Advances in low-level jet research and future prospects // J. Meteorol. Res. 2014. V. 28, N 1. P. 57–75. DOI: 10.1007/s13351-014-3166-8.
29. Banta R.M., Pichugina Y.L., Newsom R.K. Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer // J. Atmos. Sci. 2003. V. 60, N 20. P. 2549–2555. DOI: 10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.
30. Sogachev A., Leclerc M.Y. On concentration footprints for a tall tower in the presence of a nocturnal low-level jet // Agric. Forest Meteorol. 2011. V. 151, N 6. P. 755–764. DOI: 10.1016/j.agrformet.2010.10.004.