Vol. 37, issue 11, article # 7

Antokhina O. Yu., Bobrovnikov S. M., Zharkov V. I., Zorkal’tseva O. S., Trifonov D. A. Features of the vertical distribution of air temperature over Tomsk during sudden stratospheric warming in winter 2023 according to data from the Siberian lidar station. // Optika Atmosfery i Okeana. 2024. V. 37. No. 11. P. 947–953. DOI: 10.15372/AOO20241107 [in Russian].
Copy the reference to clipboard

Abstract:

Atmospheric temperature anomalies associated with sudden stratospheric warmings (SSWs) observed over the territory of Siberia require detailed study. In Siberia, there are few instruments that can provide the necessary information on the vertical distribution of atmospheric temperature. Unique lidar of the Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia (56.48° N, 85.05° E), developed for regular lidar measurements of atmospheric parameters, is one of few ground-based devices in Siberia which provide necessary data on the vertical stratification of atmospheric temperature during a SSW event. To determine the characteristics of atmospheric temperature anomalies during the SSW period in winter 2023 over Tomsk, data on atmospheric temperature in individual nights obtained by the SLS lidar, the WACCM model, the standard mid-latitude winter model, and the ERA5 reanalysis were compared. For the first time, the possibility of using vertical atmospheric temperature profiles obtained by the Raman scattering method to study the SSW effect is show. Use of lidar air temperature profiles to analyze changes in the vertical structure of the atmosphere during sudden stratospheric warmings is demonstrated.

Keywords:

lidar, temperature, atmosphere, Raman scattering, sudden stratospheric warming

Figures:

References:

1. Arias P.A., Bellouin N., Coppola E., Jones R.G., Krinner G., Marotzke J., Naik V., Palmer M.D., Plattner G.-K., Rogelj J., Rojas M., Sillmann J., Storelvmo T., Thorne P.W., Trewin B., Achuta Rao K., Adhikary B., Allan R.P., Armour K., Bala G., Barimalala R., Berger S., Canadell J.G., Cassou C., Cherchi A., Collins W., Collins W.D., Connors S.L., Corti S., Cruz F., Dentener F.J., Dereczynski C., Di Luca A., Diongue Niang A., Doblas-Reyes F.J., Dosio A., Douville H., Engelbrecht F., Eyring V., Fischer E., Forster P., Fox-Kemper B., Fuglestvedt J.S., Fyfe J.C., Gillett N.P., Goldfarb L., Gorodetskaya I., Gutierrez J.M., Hamdi R., Hawkins E., Hewitt H.T., Hope P., Islam A.S., Jones C., Kaufman D.S., Kopp R.E., Kosaka Y., Kossin J., Krakovska S., Lee J.-Y., Li J., Mauritsen T., Maycock T.K., Meinshausen M., Min S.-K., Monteiro P.M.S., Ngo-Duc T., Otto F., Pinto I., Pirani A., Raghavan K., Ranasinghe R., Ruane A.C., Ruiz L., Sallée J.-B., Samset B.H., Sathyendranath S., Seneviratne S.I., Sörensson A.A., Szopa S., Takayabu I., Tréguier A.-M., van den Hurk B., Vautard R., von Schuckmann K., Zaehle S., Zhang X., Zickfeld K. Intergovernmental Panel on Climate Change (IPCC). Technical summary // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2023. P. 35–144. DOI: 10.1017/9781009157896.002.
2. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer // Annal. Geophys. Copernicus GmbH. 2021. V. 39, N 1. P. 267–276. DOI: 10.5194/angeo-39-267-2021.
3. Yiğit E., Medvedev A.S. Internal wave coupling processes in Earth’s atmosphere // Adv. Space Res. 2015. V. 55, N 4. P. 983–1003. DOI: 10.1016/j.asr.2014.11.020.
4. Dowdy A.J., Vincent R.A., Tsutsumi M., Igarashi K., Murayama Y., Singer W., Murphy D.J., Riggin D.M. Polar mesosphere and lower thermosphere dynamics: 2. Response to sudden stratospheric warmings // J. Geophys. Res.: Atmos. 2007. V. 112, N D17. DOI: 10.1029/2006JD008127.
5. Jacobi C., Hoffmann P., Liu R.Q., Krizan P., Lastovicka J., Merzlyakov E.G., Solovjova T.V., Portnyagin Y.I. Midlatitude mesopause region winds and waves and comparison with stratospheric variability // J. Atmos. Sol.-Terr. Phys. 2009. V. 71, N 14–15. P. 1540–1546. DOI: 10.1016/j.jastp.2009.05.004.
6. Kretschmer M., Coumou D., Agel L., Barlow M., Tziperman E., Cohen J. More-persistent weak stratospheric polar vortex states linked to cold extremes // Bull. Am. Meteorol. Soc. 2018. V. 99, N 1. P. 49–60. DOI: 10.1175/bams-d-16-0259.1.
7. Meteorological Conditions & Ozone in the Polar Stratosphere. URL: https://www.cpc.ncep.noaa.gov/products/stratosphere/polar/polar.shtml#plot1 (data obrashcheniya: 10.12.2024).
8. Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Dolgovremennaya izmenchivost' parametrov vnezapnykh stratosfernykh poteplenii po dannym reanaliza ERA5 // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 200–208. DOI: 10.15372/AOO20230306; Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 370–378. DOI: 10.1134/S1024856023040206.
9. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59, N 1. DOI: 10.1029/2020RG000708.
10. Vargin P.N., Kiryushov B.M. Vnezapnoe stratosfernoe poteplenie v Arktike v fevrale 2018 year i ego vliyanie na troposferu, mezosferu i ozonovyj sloj // Meteorol. i gidrol. 2019. N 2. P. 41–56.
11. Antokhina O.Y., Antokhin P.N., Zorkaltseva O.S., Bobrovnikov S.M., Zharkov V.I., Trifonov D.A. Characteristics of the dynamics and relationships of the troposphere and stratosphere in the winter period 2022–2023 // 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE. 2023. V. 12780. P. 925–930. DOI: 10.1117/12.2688249.
12. Sigmond M., Scinocca J., Kharin V., Shepherd T. Enhanced seasonal forecast skill following stratospheric sudden warmings // Nat. Geosci. 2013. V. 6, N 2. P. 98–102. DOI: 10.1038/ngeo1698.
13. WMO: Implementation of the WMO-IQSY STRATWARM PROGRAMME. 1964. V. 13, N 4. P. 200–205. URL: https://library.wmo.int/doc_num.php?explnum_id=6525 (дата обращения: 13.11.2023).
14. Labitzke K. Stratospheric-mesospheric midwinter disturbances: A summary of observed characteristics // J. Geophys. Res.: Ocean. 1981. V. 86, N C10. P. 9665–9678. DOI: 10.1029/JC086iC10p09665.
15. Braesicke P., Langematz U. On the occurrence and evolution of extremely high temperatures at the polar winter stratopause – a GCM study // Geophys. Res. Lett. 2000. V. 27, N 10. P. 1467–1470. DOI: 10.1029/2000GL011431.
16. Manney G.L., Krüger K., Pawson S., Minschwaner K., Schwartz M., Daffer W.H., Livesey N., Mlynczac M.G., Remsberg E.E., Russell J.III, Waters J. The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses // J. Geophys. Res.: Atmos. 2008. V. 113, N D11. DOI: 10.1029/2007JD009097.
17. Limpasuvan V., Richter J.H., Orsolini Y.J., Stordal F., Kvissel O. The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM // J. Atmos. Sol.-Terr. Phys. 2012. V. 78, P. 84–98. DOI: 10.1016/j.jastp.2011.03.004.
18. Chandran A., Collins R., Garcia R., Marsh D. A case study of an elevated stratopause generated in the Whole Atmosphere Community Climate Model // Geophys. Res. Lett. 2011. V. 38, N 8. DOI: 10.1029/20010GL046566.
19. King A.D., Butler A.H., Jucker M., Earl N.O., Rudeva I. Observed relationships between sudden stratospheric warmings and European climate extremes // J. Geophys. Res.: Atmos. 2019. V. 124, N 24. P. 13943–13961. DOI: 10.1029/2019JD030480.
20. Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Primenenie kombinirovannogo metoda fotoregistratsii v lidarnykh izmereniyakh temperatury atmosfery na glavnom zerkale Sibirskoi lidarnoi stantsii // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 839–845. DOI: 10.15372/AOO20231008; Bobrovnikov S.M., Zharkov V.I., Zaitcev N.G., Trifonov D.A. Combined lidar signal registration technique for atmospheric temperature measurements with the primary mirror of the Siberian Lidar Station // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 24–30. DOI: 10.1134/S1024856023040206.
21. Bobrovnikov S.M., Zharkov V.I., Zaitsev N.G., Nadeev A.I., Trifonov D.A. Analiz korrektnosti vosstanovleniya vertikal'nogo raspredeleniya temperatury atmosfery iz lidarnykh signalov molekulyarnogo rasseyaniya na glavnom lidare Cibirskoi lidarnoi stantsii // Optika atmosf. i okeana. 2022. V. 35, N 7. P. 524–531. DOI: 10.15372/AOO20220702; Bobrovnikov S.M., Zharkov V.I., Zaitsev N.G., Nadeev A.I., Trifonov D.A. Analysis of the correctness of retrieving the vertical atmospheric temperature distribution from lidar signals of molecular scattering at the main lidar of the Siberian Lidar Station // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 704–712. DOI: 10.1134/S1024856022060057.
22. Vignon E., Mitchell D.M. The stratopause evolution during different types of sudden stratospheric warming event // Clim. Dyn. 2015. V. 44. P. 3323–3337. DOI: 10.1007/s00382-014-2292-4.
23. Hersbach H., Bell B., Berrisford P., Hirahara Sh., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 Global Reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146. P. 1999–2049. DOI: 10.1002/qj.3803.
24. Korshunov V.A., Zubachev D.S. Uvelichenie obratnogo aerozol'nogo rasseyaniya v nizhnei mezosfere v 2019–2021 years i ego vliyanie na izmereniya temperatury releevskim metodom // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 32–36. DOI: 10.15372/AOO20220105; Korshunov V.A., Zubachev D.S. Increase in the aerosol backscattering ratio in the lower mesosphere in 2019–2021 and its effect on temperature measurements with the Rayleigh Method // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 366–370.
25. Marichev V.N. Kombinirovannyi metod opticheskogo zondirovaniya nizhnei i srednei atmosfery // Optika atmosf. i okeana. 2016. V. 29, N 3. P. 210–215. DOI: 10.15372/AOO20160307; Marichev V.N. Combined method for optical sensing of the lower and middle atmosphere // Atmos. Ocean. Opt. 2016. V. 29, N 4. P. 348–352.
26. Waccm download subset. URL: https://www.acom.ucar.edu/waccm/download.shtml (дата обращения: 20.01.2024).
27. Butchart N. The stratosphere: A review of the dynamics and variability // Weather Clim. Dyn. 2022. V. 3, N 4. P. 1237–1272. DOI: 10.5194/wcd-3-1237-2022.
28. McClatchey R.A. Optical properties of the atmosphere. Air Force Cambridge Research Laboratories. Office of Aerospace Research. United States Air Force, 1972. P. 108.
29. Wargan K., Coy L. Strengthening of the tropopause inversion layer during the 2009 sudden stratospheric warming: A MERRA-2 study // J. Atmos. Sci. 2016. V. 73, N 5. P. 1871–1887. DOI: 10.1175/JAS-D-15-0333.1.
30. Zülicke C., Becker E. The structure of the mesosphere during sudden stratospheric warmings in a global circulation model // J. Geophys. Res.: Atmos. 2013. V. 118, N 5. P. 2255–2271. DOI: 10.1002/jgrd.50219.