Vol. 38, issue 03, article # 2

Starikov V. I. Temperature dependence of water vapor microwave line-broadening. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 172–177. DOI: 10.15372/AOO20250302 [in Russian].
Copy the reference to clipboard

Abstract:

Results of calculations of line widths of 18 water vapor microwave lines broadened by N2, O2, CO2, air, H2O, CO2, He, Ar, Kr, and Xe in the temperature range 30 ≤ T ≤ 400 K are presented. In the case of the broadening H2O lines by monatomic gases, these results strongly depend on the chosen interaction potential; for T ∠∼ 100 K, they depend on the model of trajectories of colliding molecules. The comparison with experimental data and other calculations is given. The results can be useful for spectral calculations required by atmospheric applications.

Keywords:

broadening, H2O lines, temperature dependence, polar and monatomic gases

References:

1. Bauer A., Godon M., Kheddar M., Hartmann J.-M. Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 41. P. 49–54. DOI: 10.1016/0022-4073(89)90020-4.
2. Dutta J.M., Jones C.R., Goyette T.M., De Lucia F.C. The hydrogen and helium pressure broadening at planetary temperature of the 183 and 380 GHz transitions of water vapor // Icarus. 1993. V. 102. P. 232–239. DOI: 10.1006/icar.1993.1046.
3. Gamache R.R., Fischer J. Half-widths of H216O, H218O, H217O, HD16O, and D216O: I. Comparison between isotopomers // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 78. P. 289–304. URL: http://faculty.uml.edu/Robert_Gamache/S.
4. Golubiatnikov G.Yu. Shifting and broadening parameters of the water vapor 183-GHz line (313–220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature // J. Mol. Spectrosc. 2005. V. 230. P. 196–198. DOI: 10.1016/j.jms.2004.10.011.
5. Koshelev M.A., Tretyakov M.Yu., Golubiatnikov G.Yu., Parshin V.V., Markov V.N., Koval I.A. Broadening and shifting of the 321-, 325-, and 380-GHz lines of water vapor by pressure of atmospheric gases // J. Mol. Spectrosc. 2007. V. 241. P. 101–108. DOI: 10.1016/j.jms.2006.11.005.
6. Golubiatnikov G.Yu., Koshelev M.A., Krupnov A.F. Pressure shift and broadening of 110–101 water vapor lines by atmosphere gases // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 1828–1833. DOI: 10.1016/j.jqsrt.2007.12.006.
7. Tretyakov M.Yu., Koshelev M.A., Vilkov I.N., Parshin V.V., Serov E.A. Resonator spectroscopy of the atmosphere in the 350–500 GHz range // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 114. P. 109–121. DOI: 10.1016/j.jqsrt.2012.08.019.
8. Koshelev M.A., Golubiatnikov G.Yu., Vilkov I.N., Tretyakov M.Yu. Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 205. P. 51–58. DOI: 10.1016/j.jqsrt.2017.09.032.
9. Koshelev M.A. Collisional broadening and shifting of the 211–202 transition of H216O, H217O, H218O by atmosphere gases // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 550–552. DOI: 10.1016/j.jqsrt.2010.10.009.
10. Koshelev M.A., Vilkov I.N., Makarov D.S., Tretyakov M.Yu., Vispoel B., Gamache R.R., Cimini D., Romano F., Rosenkranz P.W. Water vapor line profile at 183-GHz: Temperature dependence of broadening, shifting, and speed-dependent shape parameters // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 262. P. 107472. DOI: 10.1016/j.jqsrt.2020.107472.
11. Dick M.J., Drouin B.J., Pearson J.C. A collisional cool investigation of the pressure broadening of the 110 ← 101 transitions of water from 17 to 200 K // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110. P. 619–627. DOI: 10.1016./j.jqsrt.2018.2008.11.012.
12. Dick M.J., Drouin B.J., Pearson J.C. Collision cooling investigation of THz rotational of water // Phys. Rev. A. 2010. V. 81. Art. N 022706. DOI: 10.1103/PhysRevA.82.036703.
13. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943. DOI: 10.1051/jphys:019790040010092300.
14. Tsao C.J., Curnutte B. Line-widths of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2, N 1. P. 41–91.
15. Bykov A.D., Sinitsa L.N., Starikov V.I. Eksperimental'nye i teoreticheskie metody v spektroskopii vodyanogo para. Novosibirsk: Nauka, 1989. 296 p.
16. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73. P. 5432–5450. DOI: 10.1063/1.440088.
17. Radtsik A.A, Smirnov B.M. Spravochnik po atomnoi i molekulyarnoi fizike. M.: Atomizdat, 1980. 240 p.
18. Bykov A.D., Lavrent'eva N.N., Sinitsa L.N. Rezonansnye funktsii teorii ushireniya i sdviga linii dlya real'nykh traektorii // Optika atmosf. i okeana. 1992. V. 5, N 11. P. 1127–1131.
19. Labani B., Bonamy J., Robert D., Hartmann J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84. P. 4256–4267. DOI: 10.1063/1.450047.
20. Petrova T.M., Solodov A.M., Starikov V.I., Solodov A.A. Vibrational dependence of an intrermolecular potential for H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253. DOI: 10.1016/j.jqsrt.2013.06.021.
21. Steyert D.W., Wang W.F., Sirota J.M., Donahue N.M., Reuter D.C. Hydrogen and helium pressure broadening of water transitions in the 380–600 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83. P. 83–91. DOI: 10.1016/S0022-4073(02)00300-X.
22. Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Eksperimental'nyi i teoreticheskii analiz ushireniya linii pogloshcheniya H2O odnoatomnymi gazami v shirokom spektral'nom diapazone // Optika atmosf. i okeana. 2023. V. 36, N 4. P. 262–279. DOI: 10.15372/AOO20230403; Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Experimental and theoretical analysis of the broadening and shift of H2O absorption lines by monatomic gases in a wide spectral range // Atmos. Ocean. Opt. 2023. V. 36, N 5. P. 433–453.