Vol. 38, issue 03, article # 9
Copy the reference to clipboard
Abstract:
An original method is proposed for calculating turbulent parameters in an atmospheric boundary layer using an unsteady 3D turbulence model and algebraic relations for Reynolds stresses and turbulent heat fluxes. A mesoscale model with such parameterization of turbulence in the boundary layer has been tested on measurements made using meteorological instruments of the Basic Experimental Complex of IAO SB RAS. The daily dynamics of the vertical distribution of some turbulent parameters for the conditions of Tomsk is analyzed. A comparison of calculations with measurements shows that the model well predicts vertical profiles of temperature and horizontal wind speed and direction. However, for conditions where the surface is covered with snow, further research is needed to account the interaction of APS with the surface in the model. The developed turbulence model can be used in calculations of atmospheric boundary layer parameters with high horizontal resolution (grid size 100–1000 m).
Keywords:
numerical weather prediction, mesoscale model TSUNM3, turbulence structure, atmospheric boundary layer
References:
1. Atmosfernaya turbulentnost' i modelirovanie rasprostraneniya primesei / pod red. F.T.M. N'istadta, KH. van Dopa. L.: Gidrometeoizdat, 1985. 352 p.
2. Kurbatskii A.F. Lektsii po turbulentnosti. Novosibirsk: Novosib. gos. un-t, 2015. 102 p.
3. Andren A. Evaluation of a turbulence closure scheme for air-pollution applications // J. Appl. Meteorol. 1990. V. 29, N 3. P. 224–239. DOI: 10.1175/1520-0450(1990)029<0224:EOATCS>2.0.CO;2.
4. Penenko V.V., Aloyan A.E. Modeli i metody dlya zadach okhrany okruzhayushchei sredy. Novosibirsk: Nauka, 1985. 256 p.
5. Glazunov A.V., Lykossov V.N. Large-eddy simulation of interaction of ocean and atmospheric boundary layers // Russ. J. Numer. Anal. Math. Modelling. 2003. V. 18. P. 279–295. DOI: 10.1515/156939803769210957.
6. Belikov D.A., Starchenko A.V. Chislennaya model' turbulentnogo perenosa primesi v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2007. V. 20, N 8. P. 667–673.
7. Starchenko A.V. Modelirovanie perenosa primesi v odnorodnom pogranichnom sloe // Materialy konferentsii ENVIROMISS. Tomsk, 2000. P. 77–82. URL: http: // enviro.scert.ru/russ/enviromis/1/proceedings/ index.html.
8. Honnert R., Efstathiou G., Beare R., Ito J., Lock A., Neggers R., Plant R.S., Shin H.H., Tomassini L., Zhou B. The atmospheric boundary layer and the “gray zone” of turbulence: A critical review // J. Geophys. Res.: Atmos. 2020. V. 125. P. e2019JD030317. DOI: 10.1029/2019JD030317.
9. Doubrawa P., Muñoz-Esparza D. Simulating real atmospheric boundary layers at gray-zone resolutions: How do currently available turbulence parameterizations perform? // Atmosphere. 2020. V. 11, N 4. P. 345. DOI: 10.3390/atmos11040345.
10. Hope A.P., Lopez-Coto I., Hajny K., Tomlin J.M., Kaeser R., Stirm B., Karion A., Shepson P.B. Analyzing “gray zone” turbulent kinetic energy predictions in the boundary layer from three WRF PBL schemes over New York city and comparison with aircraft measurements // J. Appl. Meteor. Climatol. 2024. V. 63. P. 125–142. DOI: 10.1175/JAMC-D-22-0181.1.
11. Wiersema D.J., Wharton S., Arthur R.S., Juliano T.W., Lundquist K.A., Glascoe L.G., Newsom R.K., Schalk W.W., Brown M.J., Dexheimer D. Assessing turbulence and mixing parameterizations in the gray-zone of multiscale simulations over mountainous terrain during the METEX21 field experiment // Front. Earth Sci. 2023. V. 11. P. 1251180. DOI: 10.3389/feart.2023. 1251180.
12. Mellor G.L., Yamada T. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. 1982. V. 20. P. 851–875. DOI: 10.1029/RG020i004p00851.
13. André J.C., De Moor G., Lacarrère P., Therry G., du Vachat R. Modelling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer // J. Atmos. Sci. 1978. V. 35. P. 1861–1883. DOI: 10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.
14. Zhang X., Bao J.-W., Chen B., Grell E.D. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model // Mon. Weather Rev. 2018. V. 146. P. 2023–2045. DOI: 10.1175/MWR-D-17-0356.1.
15. Zhang C., Wang Y., Xue M. Evaluation of an E-eps and three other boundary layer parameterization schemes in the WRF model over southeast Pacific and the southern Great Plains // Mon. Weather Rev. 2020. V. 148. P. 1121–2045. DOI: 10.1175/MWR-D-19-0084.1.
16. Udina M., Montornès À., Casso P., Kosovic B., Bech J. WRF-LES Simulation of the boundary layer turbulent processes during the BLLAST campaign // Atmosphere. 2020. V. 11, N 1149. DOI: 10.3390/atmos11111149.
17. Wyngaard J.C. Toward numerical modeling in the “Terra Incognita” // J. Atmos. Sci. 2004. V. 61. P. 1816–1826. DOI: 10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
18. Juliano T.W., Kosović B., Jiménez P.A., Eghdami M., Haupt S.E., Martilli A. “Gray zone” simulations using a three-dimensional planetary boundary layer parameterization in the weather research and forecasting model // Mon. Weather Rev. 2022. V. 150. P. 1585–1619. DOI: 10.1175/MWR-D-21-0164.1.
19. Chislennoe modelirovanie pogody i kachestva atmosfernogo vozdukha v gorodakh / A.V. Starchenko, L.I. Kizhner, E.A. Danilkin, E.A. Shel'mina [i dr.]. Tomsk: Izd-vo TGU, 2022. 140 p. DOI: 10.17223/978-5-7511-2649-8.
20. Brost R., Lenschow H. Marine stratocumulus layers. Part II: Turbulence budgets // J. Atmos. Sci. 1982. V. 39. P. 818–836. DOI: 10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2.
21. Grant A.L.M. Observations of boundary layer structure made during the KONTUR experiment // Q. J. R. Meteorol. Soc. 1986. V. 112. P. 825–841. DOI: 10.1002/qj.49711247314.
22. Caughey S.J., Wyngaard J.C., Kaimal J.C. Turbulence in the evolving stable boundary layer // J. Atmos. Sci. 1979. V. 36. P. 1041–1052. DOI: 10.1175/1520-0469(1979)036<1041:TITESB> 2.0.CO;2.
23. Nieustadt F.T.M. The turbulent structure of the stable nocturnal boundary layer // J. Atmos. Sci. 1984. V. 41. P. 2202–2216. DOI: 10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.
24. Yamada T., Mellor G.A Simulation of the Wangara atmospheric boundary layer data // J. Atmos. Sci. 1975. V. 32. P. 2309–2329. DOI: 10.1175/1520-0469(1975)032<2309:ASOTWA> 2.0.CO;2.
25. Gladkikh V.A., Makienko V.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7 (109). P. 21–25.
26. Kadygrov E.N. Mikrovolnovaya radiometriya atmosfernogo pogranichnogo sloya – metod, apparatura, rezul'taty izmerenii // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
27. Odintsov S.L. Razvitie i primenenie akusticheskikh sredstv diagnostiki atmosfernogo pogranichnogo sloya // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 786–791. DOI: 10.15372/AOO20190911; Odintsov S.L. Development and use of acoustic tools for diagnostics of the atmospheric boundary layer // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 104–108.
28. Tolstykh M., Goyman G., Fadeev R., Shashkin V. Implementation of SL-AV global atmosphere model with 10 km horizontal resolution // Communications in Computer and Information Science RuSCDays. 2020. V. 1331. P. 216–225. DOI: 10.1007/978-3-030-64616-5_19.
29. Verifikatsiya prognozov po mezomasshtabnoi modeli COSMO-Ru / A.Yu. Bundel', A.A. Kirsanov, A.V. Murav'ev [i dr.] // CITES 2017: Mezhdunarodnaya molodezhnaya shkola i konferentsiya po vychislitel'no-informatsionnym tekhnologiyam dlya nauk ob okruzhayushchei srede, Tarusa – Zvenigorod, 28 august – 7 september 2017 year. Tarusa; Zvenigorod: Tomskii tsentr nauchno-tekhnicheskoi informatsii, 2017. P. 12–16.
30. Kurbatskii A.F., Kurbatskaya L.I. RANS-modelirovanie peremezhayushcheisya turbulentnosti v termicheski ustoichivo stratifitsirovannom pogranichnom sloe // PMTF. 2013. V. 54, N 4. P. 55–67.
31. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Vysota oblasti intensivnogo turbulentnogo teploobmena v ustoichivo stratifitsirovannom pogranichnom sloe atmosfery. Part 1: Metodika otsenok i statistika // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 782–790. DOI: 10.15372/AOO20201006; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Height of the region of intense turbulent heat exchange in a stably stratified atmospheric boundary layer: Part 1 – Evaluation technique and statistics // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 34–44.
32. Shekhter F.N., Vager B.G. Issledovanie vliyaniya razlichnykh faktorov na sutochnyi khod temperatury v teplovom pogranichnom sloe atmosfery // Tr. GGO im. A.I. Voeikova. 1975. Iss. 362. P. 31–40.