Vol. 38, issue 03, article # 11

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Murashko S. N. Laser-induced fluorescence of photodissociation products of liquid-drop triethyl phosphate on a surface. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 238–242. DOI: 10.15372/AOO20250311 [in Russian].
Copy the reference to clipboard

Abstract:

The paper demonstrates possibility of remote detection of surface traces of organophosphates using the double-pulse laser fragmentation/laser-induced fluorescence (LP/LIF) method. For drop-liquid traces of triethyl phosphate on a paper surface, it is shown that the process of formation of characteristic PO fragments (phosphorus oxide molecules) of organophosphates is inertial. The formation of the maximum concentration of fragments is observed approximately 2 μs after the action of a fragmenting laser pulse (266 nm). It is found that a delay between a laser pulse (247.78 nm) a fragmenting pulse of 2 μs leads to a multiple increase in the fluorescence intensity: approximately 7 times compared to the single-pulse excitation method and approximately 2.3 times compared to simultaneous double-pulse action. The results, first, demonstrate a possibility of remote detection of surface traces of organophosphates in a condensed state by the two-pulse LF/LIF method; second, they show the need to organize optimal conditions for laser exposure to increase the efficiency of the LF/LIF process.

Keywords:

organophosphate, trace, laser fragmentation, phosphorus oxide, PO-fragments, laser-induced fluorescence

References:

1. Lopatina N.B., Frolov D.V. Osnovnye napravleniya razvitiya sredstv radiatsionnoi, himicheskoi i biologicheskoi razvedki zarubezhnyh stran // Vestn. voisk RHB zashchity. 2020. V. 4, N 4. P. 470–483. DOI: 10.35825/2587-5728-2020-4-4-470-483.
2. Rybal'chenko I.V. Identifikatsiya toksichnyh himikatov // Ros. him. zhurn. (ZHurn. Ros. him. ob-va im. D.I. Mendeleeva). 2002. V. XLVI, N 4. P. 64–70.
3. Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605. DOI: 10.1364/AO.19.003597.
4. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72. DOI: 10.1080/05704929608000564.
5. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672. DOI: 10.1007/s003400000382.
6. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Laser-induced fluorescence of PO-photofragments of dimethyl methylphosphonate // Appl. Opt. 2022. V. 61, N 21. P. 6322‒6329. DOI: 10.1364/AO.456005.
7. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7. DOI: 10.1117/12.887918.
8. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90, N 17. P. 3994–3998. DOI: 10.1021/j100408a033.
9. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510. DOI: 10.1016/0009-2614(85)80291-8.
10. Long S.R., Christesen S.D., Force A.P., Bernstein J.S. Rate constant for the reaction of PO radical with oxygen // J. Chem. Phys. 1986. V. 84, N 10. P. 5965–5966. DOI: 10.1063/1.450783.
11. Wong K.N., Anderson W.R., Kotlar A.J., DeWilde M.A., Decker L.J. Lifetimes and quenching of B2Σ+ PO by atmospheric gases // J. Chem. Phys. 1986. V. 84, N 1. Р. 81–90. DOI: 10.1063/1.450136.
12. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A2Σ+ state of PO // J. Chem. Phys. 1986. V. 85, N 5. P. 2406–2413. DOI: 10.1063/1.451096.
13. Headrick J.M., Farrow R.L., Bisson S.E., Reichardt T.A., Kulp T.J. Detection of surface-bound organophosphate compounds with dual-pulse photofragmentation/laser-induced fluorescence // Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optica Publishing Group, 2010), paper LWD6. DOI: 10.1364/LACSEA.2010.LWD6.
14. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Dvuhimpul'snaya lazernaya fragmentatsiya/lazerno-indutsirovannaya fluorestsentsiya aerozolya organofosfata // Optika atmosf. i okeana. 2024. V. 37, N 7. P. 609–614. DOI: 10.15372/AOO20240710; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Two-pulse laser fragmentation/laser-induced fluorescence of organophosphate aerosol // Atmos. Ocean. Opt. 2024. V. 37, N 5. P. 732–737.
15. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 175–185. DOI: 10.15372/AOO20220301; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Efficiency of laser excitation of PO photofragments of organophosphates // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 329–340.