Vol. 38, issue 03, article # 10

Baalbaki H. A., Malikov A. V., Yudin N. A. Energy characteristics of a copper vapor laser with Marx generator pumping. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 232–237. DOI: 10.15372/AOO20250310 [in Russian].
Copy the reference to clipboard

Abstract:

Energy characteristics of a copper vapor laser (CVL) pumped by a Marx generator are studied. The schematic of the generator is provided along with the description of its operational features, since thyratrons are used as switches in the generator. It is shown that the Marx generator allows an increase in the upper limit of stable operation of thyratrons (proportional to the number of thyratrons used, up to ~ 8–10 kV of reverse voltage on the thyratron anodes for two thyratrons) and, accordingly, provides pump parameters for the active medium that are unattainable with a single thyratron. At the same time, the energy per pulse linearly increases with the voltage on the gas discharge tube (GDT) and decreases with the repetition rate of the excitation pulses. A CVL pumped by a Marx generator is a promising radiation source for solving problems of atmospheric altitude sensing, creating artificial guide stars in adaptive optics devices and active optical systems, and atmospheric bistatic communication channels.

Keywords:

copper vapor laser, Marx generator, energy characteristics, generation, thyratron

Figures:

References:

1. Kim R.L., Lee T., Lee S., Lee S.W., Kim J.S., Eun H.J., Huh Y. Copper-bromide laser for treating vascular lesions // J. Korean Phys. Soc. 2014. V. 64, N 5. P. 755–758. DOI: 10.3938/jkps.64.755.
2. Ponomarev I.V., Topchii S.B., Andrusenko Yu.N., Shakina L.D. Lechenie krapchatogo lentiginoznogo nevusa dvukhvolnovym izlucheniem lazera na parakh medi. Vestnik dermatologii i venerologii. 2021. V. 97, N 4. P. 100–106. DOI: 10.25208/vdv12113. 2021. V. 97, N 4. P. 100–106. DOI: 10.25208/vdv1210.
3. Grigor'yants A.G., Gusev A.L., Kazaryan M.A., Lyabin N.A. Lazery na parakh medi dlya pretsizionnoi obrabotki izdelii elektronnoi tekhniki // Al'ternativnaya energetika i ekologiya. 2013. N 7. P. 86–98.
4. Trigub M.V., Torgaev S.N., Evtushenko G.S., Troitskii V.O., Shiyanov D.V. Bistaticheskii lazernyi monitor // Pis'ma v ZhTF. 2016. V. 42, N 12. P. 51–56.
5. Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. Primenenie bistaticheskogo lazernogo monitora dlya vysokoskorostnoi vizualizatsii protsessov goreniya // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 962–966. DOI: 10.15372/AOO20201210; Trigub M.V., Vasnev N.A., Kitler V.D., Evtushenko G.S. The use of a bistatic laser monitor for high-speed imaging of combustion processes // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 154–159.
6. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmosfernye bistaticheskie kanaly svyazi s rasseyaniem. Part 2. Polevye eksperimenty 2013 year // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 659–664; Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013 // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 202–208.
7. Zuev V.E., Zuev V.V. Distantsionnoe opticheskoe zondirovanie atmosfery. SPb.: Gidrometeoizdat, 1992. 232 p.
8. Burlakov V.D., Zuev V.V., Evtushenko G.S., El'nikov A.V., Marichev V.N., Pravdin V.L. Lazery na parakh metallov dlya distantsionnogo zondirovaniya atmosfernogo aerozolya // Optika atmosf. i okeana. 1993. V. 6, N 3. P. 326–331.
9. Bokhan P.A., Buchanov V.V., Zakrevskii D.E., Kazaryan M.A., Kalugin M.M., Prokhorov A.M., Fateev N.V. Lazernoe razdelenie izotopov v atomarnykh parakh. M.: Fizmatlit, 2004. 208 p.
10. Arlantsev S.V., Buchanov V.V., Vasil'ev A.A., Molodykh E.I., Tykotskii V.V., Yurchenko N.I. Raschetnoe issledovanie impul'sno-periodicheskogo lazera na parakh medi // Kvant. elektron. 1980. V. 7, N 8. P. 2319–2325. DOI: 10.1070/QE1980v010n11ABEH010300.
11. Piotrovskii Yu.A., Reutova N.M., Tolmachev Yu.A. O roli stupenchatoi ionizatsii v protsessakh formirovaniya inversnoi zaselennosti v lazerakh na samoogranichennykh perekhodakh // Opt. i spektroskop. 1984. V. 7, iss. 1. P. 99–104.
12. Bokhan P.A., Gerasimov V.A., Solomonov V.I., Shcheglov V.B. O mekhanizme generatsii lazera na parakh medi // Kvant. elektron. 1978. V. 5, N 10. P. 2162–2173. DOI: 10.1070/QE1978v008n10ABEH011040.
13. Batenin V.M., Buchanov V.V., Boichenko A.M., Kazaryan M.A., Klimovskii I.I., Molodykh E.I. High-Brightness Metal Vapour Lasers (Physical Fundamentals and Mathematical Models). CRC, BocaRaton, Florida. 2016. 542 p. DOI: 10.1201/9781315372617.
14. Yudin N.A. Energeticheskie kharakteristiki lazera na parakh medi v oblasti ustoichivoi raboty tiratrona // Kvant. elektron. 1998. V. 25, N 9. P. 795–798. DOI: 10.1070/QE1998v028n09ABEH001324.
15. Grigor'yants A.G., Kazaryan M.A., Lyabin N.A. Lazery na parakh medi: konstruktsiya, kharakteristiki i primeneniya. M.: Fizmatlit, 2005. 312 p.
16. Baalbaki H.A., Yudin N.A., Yudin N.N. Perspektivy povysheniya energeticheskikh kharakteristik lazera na parakh medi // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 963–968. DOI: 10.15372/AOO20221113; Baalbaki H.A., Yudin N.A., Yudin N.N. Prospects for improving the energy characteristics of a copper vapor laser // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 86–91.
17. Baalbaki H., Yudin N.A. Effect of electrode locations on the matching of the pumping generator with the load in metal vapor laser // Opt. Quantum Electron. 2023. V. 55. P. 706. DOI: 10.1007/s11082-023-04999-z.
18. Isaev A.A., Mikhkel'soo V.T., Petrash G.G., Peet V.E., Ponomarev I.V., Treshchalov A.B. Kinetika vozbuzhdeniya rabochikh urovnei lazera na parakh medi v rezhime sdvoennykh impul'sov // Kvant. elektron. 1988. V. 15, N 12. P. 2510–2513. DOI: 10.1070/QE1988v018n12ABEH012765.
19. Bokhan P.A., Zakrevskii D.E. Vliyanie soglasovaniya generatora nakachki s lazernoi trubkoi i uslovii nakachki na relaksatsiyu metastabil'nykh sostoyanii i chastotno-energeticheskie kharakteristiki lazera na parakh medi // Kvant. elektron. 2002. V. 32, N 7. P. 602–608. DOI: 10.1070/QE2002v032n07ABEH002254.
20. Soldatov A.N., Sukhanov V.B., Fedorov V.F., Yudin N.A. Issledovanie lazera na parakh medi s povyshennym KPD // Optika atmosf. i okeana. 1995. V. 8, N 11. P. 1626–1636.
21. Hogan G.P., Webb C.E. Pre-ionization and discharge breakdown in the copper vapour laser: The phantom current // Opt. Commun. 1995. V. 117, N 5. P. 570–579. DOI: 10.1016/0030-4018(95)00143-V.
22. Singh D.K., Dikshit B., Vijayan R., Nayak A., Mishra S.K., Mukherjee J., Rawat V.S. Dependence of phantomcurrent in a metal vapor laser on electrode geometry // Laser Phys. 2020. V. 30. P. 115001. DOI: 10.1088/1555-6611/abb5ff.
23. Yudin N.A., Baalbaki Kh.A., Malikov A.V., YArkova Ya.A. Protsessy, ogranichivayushchie energeticheskie kharakteristiki lazera na parakh medi // Optika atmosf. i okeana. 2024. V. 37, N 4. P. 340–346. DOI: 10.15372/AOO20240412.