Vol. 38, issue 03, article # 3

Pronchev G. B., Еrmakov A. N. Mechanism of non-photochemical formation and estimation of rate of sulphate accumulation in atmospheric haze. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 178–184. DOI: 10.15372/AOO20250303 [in Russian].
Copy the reference to clipboard

Abstract:

The causes of dense non-photochemical haze (smog) over Beijing in winter conditions are still poorly understood. The purpose of the work is to study the mechanism of catalytic oxidation of sulfur dioxide with molecular oxygen in aerosol particles and the formation of dense non-photochemical haze. It is shown that the rapid accumulation of SO42– (tens of mg × m-3 × h-1) is observed only at high humidity and moisture acidity in particles рН = 3.7÷4.8. The reason is the transition in these conditions of the catalytic (non-photochemical) oxidation of SO2 by atmospheric oxygen with the participation of Fe and Mn ions into a fast degenerate branched mode. Modeling of the occurrence of catastrophically dangerous atmospheric haze should necessarily be carried out taking into account the mechanism of this catalytic reaction.

Keywords:

aerosol, atmospheric haze, sulfate, non-photochemical reaction, catalysis, Fe/Mn ions

References:

1. Andreae M.O., Jones C.D., Cox P.M. Strong present-day cooling implies a hot future // Nature. 2005. V. 435, N 7046. P. 1187–1190. DOI: 10.1038/nature03671.
2. Wang Y., Zhang Q., Jiang J., Zhou W., Wang B., He K., Duan F., Zhang Q., Philip S., Xie Y. Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models // J. Geophys. Res.: Atmos. 2014. V. 119, N 17. P. 10425–10440. DOI: 10.1002/2013JD021426.
3. Liu M., Song Y., Zhou T., Xu Zh., Yan C., Zheng M., Wu Zh., Hu M., Wu Y., Zhu T. Fine particle pH during severe haze episodes in northern China // Geophys. Res. Lett. 2017. V. 44, N 10. P. 5213–5221. DOI: 10.1002/2017GL073210.
4. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117, N 3. P. 1354–1359. DOI: 10.1073/pnas.1916401117.
5. Liu P., Ye C., Xue Ch,, Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: Gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20, N 7. P. 4153–4165. DOI: 10.5194/acp-20-4153-2020.
6. Cheng Y., Zheng G., Wei C., Mu Q., Zheng B., Wang Z., Gao M., Zhang Q., He K., Carmichael G., Pöshl U., Su H. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China // Sci. Adv. 2016. V. 2. Р. е1601530. DOI: 10.1126/sciadv.1601530.
7. Wang G.H., Zhang R.Y., Gomes M.E., Song Y., Zhou L., Cao J., Hu J., Tang G., Chen Zh., Li Z., Hu Z., Peng C., Lian C., Chen Y., Pan Y., Zhang Y., Sun Y., Li W., Zhu T., Tian H., Ge M. Persistent sulfate formation from London fog to Chinese haze // Proc. Nat. Acad. Sci. USA. 2016. V. 113, N 48. P. 13630–13635. DOI: 10.1002/2013JD021426.
8. Feichter J., Kjellstrom E., Rodhe H., Dentener F., Lelieveld J., Roelofs G.-J. Simulation of the tropospheric sulfur cycle in a global climate model // Atmos. Environ. 1996. V. 30, N 10–11. P. 1693–707. DOI: 10.1016/1352-2310(95)00394-0.
9. Mc-Cabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. Isotopic constraints on non-photochemical sulfate production in the Arctic winter // Geophys. Res. Lett. 2006. V. 33, N 5. L05810. DOI: 10.1029/2005GL025164.
10. Harris E., Sinha B., Hoppe P., Crowley J.N., Ono S., Foley S. Sulfur isotope fractionation during oxidation of sulfur dioxide: Gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3, and iron catalysis // Atmos. Chem. Phys. 2012. V. 12, N 1. Р. 407–424.
11. He P., Alexander B., Geng L., Chi X., Shidong C., Fan H., Zhan H., Kang H., Zheng G., Cheng Y., Su H., Liu C., Xie Zh. Isotopic constraints on heterogeneous sulfate production in Beijing haze // Atmos. Chem. Phys. 2018. V. 18, N 8. P. 5515–5528. DOI: 10.5194/acp-18-5515-2018.
12. Martin L.R., Hill M.W. The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV) // Atmos. Envir. 1987. V. 21, N 10. P. 2267–2270. DOI: 10.1016/0004-6981(87)90361-1.
13. Grieken R.V. Optimization and Environmental Application of TW-EPMA for Single Particle Analysis. Antwerpen: Antwerpen University, 2005. P. 5.3–5.4.
14. Fountoukis C., Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K Ca2+  Mg2+ – NH4+ Na– SO42– NO3 Cl-  H2O aerosols // Atmos. Chem. Phys. 2007. V. 7, N 17. P. 4639–4659. DOI: 10.5194/acp-7-4639-2007.
15. Yermakov A.N., Aloyan A.E., Arutyunyan V.O. Acidity of aerosol particles in the rural atmosphere // Russ. Meteorol. Hydrol. 2021. V. 46, N 11. P. 762–767. DOI: 10.3103/S1068373921110054.
16. Yermakov A.N. On a new mode of catalytic sulfite oxidation in the presence of Mn(II) and excess metal ions // Kinet. Catal. 2023. V. 64, N 1. P. 74–84. DOI: 10.1134/S0023158423010019.
17. Warneck P., Mirabel P., Salmon G.A., van Eldik R., Vinckier C., Wannowius K.J., Zetzsch C. Review of the activities and achievements of the EUROTRAC subproject HALIPP. Heterogeneous and Liquid-Phase Processes. Berlin: Springer, 1996. P. 7–74.
18. Zheng B., Zhang Q., Zhang Y., He K.-B., Wang K., Zheng G., Duan F.A., Ma Y.L., Kimoto T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China // Atmos. Chem. Phys. Discuss. 2015. V. 14, N 15. P. 2031–2049. DOI: 10.5194/acp-15-2031-2015.
19. Zheng G.J., Duan F.K., Su H., Ma Y.L., Cheng Y., Zheng B., Huang T., Kimoto T., Chang D., Pöshl U., Cheng Y.F., He K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15, N 6. P. 2969–2983. DOI: 10.5194/acp-15-2969-2015.
20. Pronchev G.B., Ermakov A.N. Priroda gigroskopichnosti aerozol'nykh chastits atmosfernoi dymki nad Pekinom // Optika atmosf. i okeana. 2024. V. 37, N 12. P. 1015–1022. DOI: 10.15372/AOO20241204.
21. Brandt Ch., van Eldik R. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms // Chem. Rev. 1995. V. 95, N 1. P. 119–190. DOI: 10.1021/cr00033a006.
22. Ibusuki T., Takeuchi K. Sulfur-dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous-solutions at environmental reaction condition // Atmos. Environ. 1987. V. 21, N 7. P. 1555–1560. DOI: 10.1016/0004-6981(87)90317-9.
23. Song H., Lu K., Ye C., Dong H., Li S., Chen S., Wu Zh., Zheng M., Zeng L., Hu M., Zhang Y. A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxide ions in both summer and winter // Atmos. Chem. Phys. 2021. V. 21. P. 13713–13727. DOI: 10.5194/acp-21-13713-2021.
24. Herrmann H., Ervens B., Jacobi H.-W., Wolke R., Nowacki P., Zellner R.J. CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36, N 3. P. 231–284. DOI: 10.1023/A:1006318622743.
25. Berglund J., Fronaeus S., Elding L.I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution // Inorg. Chem. 1993. V. 32, N 21. P. 4527–4538. DOI: 10.1002/chin.199402019.
26. Betterton E.A., Hoffman M.R. Oxidation of aqueous SO2 by peroxymonosulfufate // J. Phys. Chem. 1988. V. 92, N 21. P. 5962–5965.
27. Zhang H., Xu Y., Jia L. A chamber study of catalytic oxidation of SO2 by Mn2+/Fe3+ in aerosol water // Atmos. Envir. 2021. V. 245. Р. 118019. DOI: 10.1016/j.atmosenv.2020.118019.