Vol. 38, issue 03, article # 1

Myshkin V. F., Khan V. A., Balandin S. F., Wang Cailun., Sosnovsky S. A. Effect of clusters of air nanobubbles on propagation of optical pulses in water. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 165–171. DOI: 10.15372/AOO20250301 [in Russian].
Copy the reference to clipboard

Abstract:

The development of mineral resources of the world ocean puts forward the task of using high-speed communication channels between two underwater objects. Optical radiation provides the highest transmission speed. However, the turbidity of natural water systems varies in a wide range. Therefore, it is relevant to study the influence of various components of water suspension on the conditions of laser pulse transmission. The paper presents the results of simulation of the propagation of optical pulses at a wavelength of 0.514 mm with a duration of 2 ns in water containing only clusters of nanobubbles. It is shown that the maximum flux of radiation scattered on clusters of nanobubbles at the entrance to the receiver does not exceed 10% of the radiation flux that passed without scattering along a path up to 150 m long. At the same time, an increase in pulse width at half-height does not exceed 30%. The limitation of the path length in water containing only clusters of nanobubbles is due to attenuation. Further studies are related to the investigation of the influence of organic and inorganic suspended matter on the propagation of laser radiation in water.

Keywords:

underwater optical communication, laser pulse, dispersion, scattering, attenuation, suspension, nanobubble clusters

References:

1. Bunkin N.F., Bunkin F.V. Babstonnaya struktura vody i vodnykh rastvorov elektrolitov // Uspekhi fiz. nauk. 2016. V. 186, N 9. P. 933–952. DOI: 10.3367/UFNr.2016.05.037796.
2. Koshoridze S.I., Levin Yu.K. Conditions of nucleation and stability of bulk nanobubbles // Rus. Phys. J. 2022. V. 65, N 1. DOI: 10.1007/s11182-022-02611-7.
3. Zhu S., Chen X., Liu X., Zhang G., Tian P. Recent progress in and perspectives of underwater wireless optical communication // Prog. Quantum Electron. 2020. V. 73. DOI: 10.1016/j.pquantelec.2020.100274.
4. Schirripa Spagnolo G., Cozzella L., Leccese F. Underwater optical wireless communications: Overview // Sensors. 2020. V. 20. 2261. DOI: 10.3390/s20082261.
5. Shifrin K.S. Vvedenie v optiku okeana. L.: Gidrometeoizdat, 1983. 280 p.
6. Stramski D., Boss E., Bogucki D., Voss K.J. The role of seawater constituents in light backscattering in the ocean // Prog. Oceanogr. 2004. V. 61. P. 27–56. DOI: 10.1016/j.pocean.2004.07.001.
7. Sugano K., Miyoshi Y., Inazato S. Study of ultrafine bubble stabilization by organic material adhesion // Japanese J. Multiphase Flow. 2017. V. 31, N 3. P. 299–306.
8. Kokhanenko G.P., Krekova M.M., Penner I.E., Shamanaev V.S. Obnaruzhenie neodnorodnostei gidrozolya polyarizatsionnym lidarom // Optika atmosf. i okeana. 2004. V. 17, N 9. P. 750–758.
9. Evgenieva Ts., Grigorov V., Anguelov V., Gurdev L. Estimation of the double-scattering component of the lidar return from multi-component atmosphere // J. Phys.: Conf. Ser. 2021. V. 1859. P. 012029. DOI: 10.1088/1742-6596/1859/1/012029.
10. Kostylev N.M., Kolyuchkin V.Ya., Stepanov R.O. Matematicheskaya model' rasprostraneniya lazernogo izlucheniya v morskoi vode // Opt. i spektroskop. 2019. V. 127, iss. 4. P. 558–562.
11. Cox W.C., Jr. Simulation, Modeling, and Design of Underwater Optical Communication Systems. North Carolina: North Carolina State University, 2012. 262 p.
12. Myshkin V.F., Khan V.A., Turin S.V., Poberejhnikov A.D., Balandin S.F., Sosnovskiy S.A., Abramova E.S. Propagation of optical pulses in natural waters // Proc. SPIE. N 1234411E. 2022. DOI: 10.1117/12.2644982.
13. Ovchinnikov V.A., Yakovlev A.N., Tsipilev V.P. Modelirovanie rasprostraneniya izlucheniya v rasseivayushchikh sredakh razlichnoi tolshchiny // Izvestiya Vuzov. Fizika. 2012. V. 55, N 11/3. P. 162–164.
14. Bunkin N.F., Shkirin A.V. Issledovanie babstonno-klasternoi struktury vody i vodnykh rastvorov elektrolitov metodami lazernoi diagnostiki // Tr. in-ta obshchei fiziki im. A.M. Prokhorova RAN. 2013. V. 69. P. 2–57.