Vol. 38, issue 03, article # 7

Belyayeva A. V., Vetrov A. L., Kalinin N. A., Frick P. G., Shchapov V. A. Application of Landsat satellite data to estimation of the effect of urban development on land surface temperature distribution. // Optika Atmosfery i Okeana. 2025. V. 38. No. 03. P. 206–213. DOI: 10.15372/AOO20250307 [in Russian].
Copy the reference to clipboard

Abstract:

It is well known that the surface temperature in large cities differs from that of the surrounding area. However, the influence of geometric characteristics of urban areas on the spatial distribution of land surface temperature is poorly studied. This paper, which aimed at solving a scientific problem in the field of urban climatology, presents the results of the analysis of the land surface temperature in four Russian cities with millions of inhabitants performed using Landsat 8 satellite data on cloudless days from May to September 2013–2022. First, the robustness of the urban temperature distribution to relatively weak changes in meteorological conditions is studied. Second, morphological characteristics such as building density, building height, and elevation of terrain were considered as factors that have potential influence on urban surface temperature distribution. The results of the analysis have shown the stability of the temperature field to meteorological conditions, as well as a high correlation between temperature and building density for cities with low-hilly and hilly surface relief. For Krasnoyarsk, characterized by a high degree of heterogeneity of terrain relief, such regularities are not revealed. It is shown that the factor of local temperature growth deserves attention when designing residential areas in large cities with relatively flat relief. The results can provide an opportunity to improve the quality of climate services and the quality of life of the population in urbanized regions.

Keywords:

Landsat-8, surface temperature, urban heat island, urban morphology

Figures:

References:

1. Wicki A., Parlow E. Multiple regression analysis for unmixing of surface temperature data in an urban environment // Remote Sens. 2017. V. 9, N 7. Art. N. 684. DOI: 10.3390/rs9070684.
2. Kislov A.V., Varentsov M.I., Gorlach I.A., Alekseeva L.I. «Ostrov tepla» moskovskoi aglomeratsii i urbanisticheskoe usilenie global'nogo potepleniya // Vestn. Mosk. un-ta. Iss. 5. Geogr. 2017. N 4. P. 12–19.
3. Kim S.W., Brown R.D. Urban heat island (uhi) intensity and magnitude estimations: A systematic literature review // Sci. Total Environ. 2021. V. 779. Art. No. 146389. DOI: 10.1016/j.scitotenv.2021.146389.
4. Liu Z., Zhan W., Lai J., Bechtel B. Taxonomy of seasonal and diurnal clearsky climatology of surface urban heat island dynamics across global cities // ISPRS J. Photogramm. Remote Sens. 2022. V. 187. P. 14–33. DOI: 10.1016/j.isprsjprs.2022.02.019.
5. Kalogeropoulos G., Dimoudi A., Toumboulidis P., Zoras S. Urban heat island and thermal comfort assessment in a medium-sized mediterranean city // Atmosphere. 2022. V. 13, N 7. Art. No. 1102. DOI: 10.3390/atmos13071102.
6. Chen X., Zhang Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China // Sustainable Cities Soc. 2017. V. 32. P. 87–99. DOI: 10.1016/j.scs.2017.03.013.
7. Azhdari A., Soltani A., Alidadi M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city // Sustain. Cities Soc. 2018. V. 41. P. 853–864. DOI: 10.1016/j.scs.2018.06.034.
8. Peng J., Jia J., Liu Y., Li H. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas // Remote Sens. Environ. 2018. V. 215. P. 255–267. DOI: 10.1016/j.rse.2018.06.010.
9. Logan T., Zaitchik B., Guikema S., Nisbet A. Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature // Remote Sens. Environ. 2020. V. 247. Art. No. 111861. DOI: 10.1016/j.rse.2020.111861.
10. Kalinin N.A., Shklyaev V.A., Isakov S.V. Primenenie dannykh sputnikov Landsat dlya opredeleniya dinamiki izmeneniya struktury zemlepol'zovaniya i differentsial'nogo al'bedo territorii // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 530–536. DOI: 10.15372/AOO20180705.
11. Krüger E., Minella F., Rasia F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil // Build. Environ. 2011. V. 46, N 3. P. 621–634. DOI: 10.1016/j.buildenv.2010.09.006.
12. Qaid A., Ossen D.R. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions // Int. J. Biometeorol. 2015. V. 59, N 6. P. 657–677. DOI: 10.1007/s00484-014-0878-5.
13. Thani S.K.S.O., Mohamad N.H.N., Abdullah S.M.S. The influence of urban landscape morphology on the temperature distribution of hot-humid urban centre // Procedia–Social Behavioral. Sciences. 2013. V. 85. P. 356–367. DOI: 10.1016/j.sbspro.2013.08.365.
14. Lan Y., Zhan Q. How do urban buildings impact summer air temperature? The effects of building configurations in space and time // Build. Environ. 2017. V. 125. P. 88–98. DOI: 10.1016/j.buildenv.2017.08.046.
15. Sobstyl J. M., Emig T., Abdolhosseini Qomi M. J., Ulm F.-J., Pellenq R. J.-M. Role of city texture in urban heat islands at nighttime // Phys. Rev. Lett. 2018. V. 120, N 10. Art. No. 108701. DOI: 10.1103/PhysRevLett.120.108701.
16. Yang J., Wang Y., Xiao X., Jin C., Xia J., Li X. Spatial differentiation of urban wind and thermal environment in different grid sizes // Urban Clim. 2019. V. 28. Art. No. 100458. DOI: 10.1016/j.uclim.2019.100458.
17. Menghan Z., Suocheng D., Hao C., Li F. Spatio-temporal evolution of urban thermal environment and its driving factors: Case study of Nanjing, China // PLOS ONE. 2021. V. 16, N 5. Art. No. e0246011. DOI: 10.1371/journal.pone.0246011.
18. Konstantinov P.I., Grishchenko M.Yu., Varentsov M.I. Kartografirovanie ostrovov tepla gorodov Zapolyar'ya po sovmeshchennym dannym polevykh izmerenii i kosmicheskikh snimkov na primere g. Apatity (Murmanskaya oblast') // Issled. Zemli iz kosmosa. 2015. N 3. P. 27–33. DOI: 10.7868/S0205961415030069.
19. Sheng L., Tang X., You H., Gu Q. Comparison of the urban heat island intensity quantified by using air temperature and landsat land surface temperature in Hangzhou, China // Ecol. Indic. 2017. V. 72. P. 738–746. DOI: 10.1016/j.ecolind.2016.09.009.
20. Varentsov M.I., Grishchenko M.Yu., Konstantinov P.I. Sopostavlenie nazemnykh i kosmicheskikh raznomasshtabnykh temperaturnykh dannykh na primere gorodov Rossiiskoi Arktiki dlya zimnikh uslovii // Issled. Zemli iz kosmosa. 2021. N 2. P. 64–76. DOI: 10.31857/S0205961421020093.
21. Du H., Zhan W., Voogt J., Bechtel B., Chakraborty T.C., Liu Z., Hu L., Wang Z., Li J., Fu P., Liao W., Luo M., Li L., Wang S., Huang F., Miao S. Contrasting trends and drivers of global surface and canopy urban heat Islands // Geophys. Res. Lett. 2023. V. 50, N 15. Art. No. e2023GL104661. DOI: 10.1029/2023GL104661.
22. Gol'tsberg I.A. Mikroklimat SSSR. L.: Gidrometeoizdat, 1967. 282 p.
23. Larrick G., Tian Y., Rogers U., Acosta H., Shen F. Interactive visualization of 3d terrain data stored in the cloud // 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 2020. P. 0063–0070. DOI: 10.1109/UEMCON51285.2020.9298063.
24. Walawender J.P., Hajto M.J., Iwaniuk P. A new ArcGIS toolset for automated mapping of land surface temperature with the use of Landsat satellite data // IEEE International Geoscience and Remote Sensing Symposium. 2012. P. 4371–4374. DOI: 10.1109/IGARSS.2012.6350405.
25. Romanova E.N., Mosolova G.I., Berseneva I.A. Mikroklimatologiya i ee znachenie dlya sel'skogo khozyaistva. L.: Gidrometeoizdat, 1983. 246 p.
26. Kaushila K.A. K voprosu o territorial'nom raspredelenii i godovom khode razlichii minimal'noi temperatury vozdukha, obuslovlennykh rel'efom // Tr. GGO. 1970. Iss. 264. P. 90–96.
27. Demin V.I. O roli antropogennykh i estestvennykh faktorov v otsenke gorodskogo ostrova tepla // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V. 16, N 5. P. 25–33. DOI: 10.21046/2070-7401-2019-16-5-25-33.