Vol. 39, issue 02, article # 8

Maslyashova A. O., Uspensky A. B. Sea surface temperature mapping using data from satellite-based MTVZA‑GYa microwave radiometer. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 145–150. DOI: 10.15372/AOO20260208 [in Russian].
Copy the reference to clipboard

Abstract:

A method for remote mapping of the sea surface temperature field (SST) in a cloudless and cloudy atmosphere has been proposed and tested based on SST measurements of MTVZA-GYa microwave radiometer from Meteor M satellite Nos. 2-2 and 2-4. The method includes the preliminary SST estimation using an artificial neural network (ANN) algorithm of multilayer perceptron type and statistical filtering of the preliminary estimates using climatic SST values calculated from the ERA5 reanalysis. The neural network algorithm uses antenna temperatures measured in five scanner channels of the MTVZA-GYa radiometer as predictors. Reference SST values from the open access ICOADS database are used to train the ANN. The statistical filtering procedure makes it possible to reduce the influence of clouds and precipitation in the satellite radiometer field of view and provides a root-mean-square error of the SST estimates on the order of 1.2–1.7 °C and a coefficient of determination of about 0.8–0.9 when compared with in situ observations. The proposed approach is applicable to operational global “all-weather" monitoring of sea surface temperature and can be adapted to analyze SST measurements of MTVZA-GYa type radiometers with improved technical and information characteristics.

Keywords:

sea surface temperature, microwave radiometer MTVZA-GYa, ERA5 reanalysis, ICOADS database, artificial neural network

Figures:

References:

1. Maslyashova A.O., Uspenskii A.B. Kartirovanie temperatury poverhnosti okeana po dannym mikrovolnovogo radiometra MTVZA-GYA so sputnika «Meteor-M» N 2–4 // Materialy 22-i Mezhdunar. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». M.: IKI RAN, 2024. P. 49.
2. O’Carroll A.G., Armstrong E.M., Beggs H.M., Bouali M., Casey K.S., Corlett G.K., Dash P., Donlon C.J., Chelle L.G., Høyer J.L., Ignatov A., Kabobah K., Kachi M., Kurihara Yu., Karagali I., Maturi E., Merchant Ch.J., Marullo S., Minnett P.J., Pennybacker M., Ramakrishnan B., Ramsankaran R., Santoleri R., Sunder S., Saux Picart S., Vàzquez-Cuervo J., Wimmer W. Observational needs of sea surface temperature // Front. Mar. Sci. 2019. V. 6. P. 420. DOI: 10.3389/fmars.2019.00420.
3. Minnett  J., Alvera-Azcárate A., Chin T.M., Corlett G.K., Gentemann C.L., Karagali I., Li X., Marsouin A., Marullo S., Maturi E., Santoleri R., Saux Picart S., Steele M., Vazquez-Cuervo J. Half a century of satellite remote sensing of sea-surface temperature // Remote Sens. Environ. 2019. V. 233. P. 111366. DOI: 10.1016/j.rse.2019.111366.
4. Chelton D.B., Wentz F.J. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research // Bull. Am. Meteorol. Soc. 2005. V. 86, N 8. P. 1097–1115. DOI: 10.1175/BAMS-86-8-1097.
5. Pearson K., Merchant C., Embury O., Donlon C. The role of Advanced Microwave Scanning Radiometer 2 channels within an optimal estimation scheme for sea surface temperature // Remote Sens. 2018. P. 2072–4292. DOI: 10.3390/rs10010090.
6. Gentemann C.L., Hilburn K.A. In situ validation of sea surface temperatures from the GCOM-W1 AMSR2 RSS calibrated brightness temperatures // J. Geophys. Res. Ocean. 2015. V.  120. P.  3567–3585. DOI: 10.1002/2014JC010574.
7. Sazonov D.S. Algoritm vosstanovleniya temperatury poverhnosti okeana, skorosti privodnogo vetra i integral'nogo parosoderzhaniya po dannym MTVZA GYA // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022. V. 19, N 1. P. 50–64.
8. Goodfellow I., Bengio Y., Courville A. Deep Learning / I. Goodfellow, Y. Bengio, A. Courville (eds.). Cambridge: The MIT Press, 2016. 800 p. DOI: 10.1007/s10710-017-9314-z.
9. Uspenskii A.B., Timofeev Yu.M., Kozlov D.A., Chernyi I.V. Razvitie metodov i sredstv distantsionnogo temperaturno-vlazhnostnogo zondirovaniya zemnoi atmosfery // Meteorol. i gidrol. 2021. N 12. P. 33–44.
10. Johnson B.T., Dang C., Stegmann P., Liu Q., Moradi I., Auligne T. The Community Radiative Transfer Model (CRTM): Community-focused collaborative model development accelerating research to operations // Bull. Am. Meteorol. Soc. 2023. V. 104, N 10. P. E1817–E1830. DOI: 10.1175/BAMS-D-22-0015.1.
11. U.S. Department of Commerce, National Oceanic and Atmospheric Administration. International Comprehensive Ocean Atmosphere Dataset].   2016. URL: https: //icoads.noaa.gov/icoads_brochure_20160308_8.5x11.pdf (last access:  18.06.2025).
12. Freeman E., Woodruff S.D., Worley S.J., Lubker S.J., Kent E.C., Angel W.E., Berry D.I., Brohan P., Eastman R., Gates L., Gloeden W., Ji Z., Lawrimore J., Rayner N.A., Rosenhagen G., Smith S.R. ICOADS Release 3.0: A major update to the historical marine climate record // Int. J. Climatol. 2017. V. 37. P. 2211–2232. DOI: 10.1002/joc.4775.
13. Hersbach  H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., DraganiR., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez Ph., Lupu C., Radnoti G., de Rosnay P., Rozum I.Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Quart. J. Roy. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
14. Locarnini  R.A., Mishonov А.V., Baranova O.K., Boyer T.P., Zweng M.M., Garcia H., Reagan J.R., Seidov D., Weathers K.W., Paver C., Smolyar I.V., Locarniniet R.A. World Ocean Atlas. Vol. 1: Temperature. USA: US Department of Commerce, 2024. DOI: 10.25923/54bh-1613.