Vol. 39, issue 02, article # 6

Mandrikova О. V., Mandrikova B. S. Anomaly recognition in neutron monitor observations using wavelet decompositions and statistical decision theory rules. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 129–137. DOI: 10.15372/AOO20260206 [in Russian].
Copy the reference to clipboard

Abstract:

During disturbances in near-Earth space, disruptions in ground-based and satellite technological systems, including catastrophic failures, occur. Therefore, the problem of developing methods for real-time analysis and monitoring of the natural environment with acceptable accuracy is particularly pressing. This article explores a new automated method for detecting anomalies in neutron monitor (NM) observations. This method is based on the synthesis of wavelet decompositions with the rules of statistical decision theory; it enables the detection of anomalies in NM observations and the assessment of their intensity. Discrete wavelet decompositions with adaptive threshold functions are used to detect anomalies. The parameters of the threshold functions are automatically estimated (as data entered the processing system) using the rules of statistical decision theory. The application of these rules yielded a solution with an error not exceeding an a priori specified value. The intensity of anomalies in NM observations is then calculated by summing the amplitudes of wavelet coefficients exceeding the estimated thresholds. The paper studies periods of strong and extreme geomagnetic storms in 2024–2025. Correlations between Dst index and the intensity of anomalies in NM observations are analyzed. The results showed a significant increase in the correlation between the Dst index and the intensity of anomalies in neutron monitor observations during geomagnetic storms. The obtained correlations reached their maxima with a delay of several hours, demonstrating the importance of neutron monitor observations and their consideration when solving space weather problems. The results of the work can be used in space weather forecasting for the early detection of sporadic variations in the cosmic ray flux.

Keywords:

cosmic rays, neutron monitor observation, Forbush effect, space weather, wavelet decomposition, statistical decision theory rules

Figures:

References:

1. Dem'yanov V.V., Yasyukevich Yu.V. Kosmicheskaya pogoda: faktory riska dlya global'nykh navigatsionnykh sputnikovykh sistem // Solnechno-zemnaya fizika. 2021. V. 7, N 2. P. 30–52. DOI: 10.12737/szf-72202104.
2. Strekalovskaya A.A., Parshina S.S. Kosmicheskaya pogoda i zdorov'e cheloveka: sovremennoe sostoyanie voprosa (obzor) // Saratovskii nauchno-meditsinskii zhurnal. 2021. V. 17, N 3. P. 578–581.
3. Rozenberg I.N., Gvishiani A.D., Solov'ev A.A., Voronin V.A., Pilipenko V.A. Vliyanie kosmicheskoi pogody na nadezhnost' funktsionirovaniya zheleznodorozhnogo transporta v arkticheskoi zone Rossii // ZHeleznodorozhnyi transport. 2021. N 12. P. 20–26.
4. Gvozdarev A.Yu., Sivokon' V.P., Khomutov S.Yu. Otsenka velichiny geomagnitno-indutsirovannykh tokov v tsentral'nom energoraione energosistemy Kamchatskogo kraya // Vestn. KRAUNTS. Fiziko-matematicheskie nauki. 2024. V. 49, N 4. P. 185–202.
5. Rubtsova O.A., Kovalenko V.A., Molodykh S.I. Proyavlenie izolirovannykh geliogeofizicheskikh vozmushchenii v vysokoshirotnoi troposfere // Optika atmosf. i okeana. 2008. V. 21, N 6. P. 532–535.
6. Belov A.V., Eroshenko E.A., Yanke V.G., Oleneva V.A., Abunina M.A., Abunin A.A. Metod global'noi s"emki dlya mirovoi seti neitronnykh monitorov // Geomagnetizm i aeronomiya. 2018. V. 58, N 3. P. 374–389. DOI: 10.7868/S0016794018030082.
7. Zverev A.S., Gololobov P.Yu., Grigor'ev V.G., Starodubtsev S.A. Prognoz vozmushchenii solnechnogo vetra i geomagnitnykh bur' na osnove nazemnykh izmerenii kosmicheskikh luchei // Vestn. SVFU. 2024. V. 21, N 1. P. 58–69. DOI: 10.25587/2222-5404-2024-21-1-58-69.
8. Kozlov V.I. Osnovaniya prognoza aktivnosti Solntsa na baze monitoringa kosmicheskikh luchei // Vestn. SVFU. 2018. V. 68, N 6. P. 67–80. DOI: 10.25587/SVFU.2018.68.21802.
9. Belov A.V., Belova E.A., Shlyk N.S., Abunina M.A., Abunin A.A., Belov S.M. Forbush-effekty i geomagnitnye buri // Geomagnetizm i aeronomiya. 2024. V. 64, N 3. P. 322–335. DOI: 10.31857/S0016794024030015.
10. Ptitsyna N.G., Danilova O.A., Tyasto M.I. Korrelyatsiya zhestkosti obrezaniya kosmicheskikh luchei s parametrami geliosfery i geomagnitnoi aktivnosti na raznykh fazakh magnitnoi buri v noyabre 2004 year // Geomagnetizm i aeronomiya. 2020. V. 60, N 3. P. 281–292. DOI: 10.31857/S0016794020020145.
11. Badruddin B.H., Derouich M. Study of the geoeffectiveness of interplanetary magnetic clouds // Planet. Space Sci. 2017. V. 139. P. 1–10. DOI: 10.1016/J.PSS.2017.03.001.
12. Badruddin B., Aslam O.P.M., Derouich M., Asiri H., Kudela K. Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017 // Space Weather. 2019. V. 17. P. 487. DOI: 10.1029/2018SW001941.
13. Ahmed O., Badruddin B., Derouich M. Forbush decreases during strong geomagnetic storms: Time delays, rigidity effects, and ICME-driven modulation // Astrophys. Space Sci. 2025. V. 370. P. 86. DOI: 10.1007/s10509-025-04477-w.
14. Perasa Kh., Libin I., Suniga A., Sapotitla Kh., Madrigal M. Monitoring kosmicheskoi pogody na zemle: o vozmozhnosti prognoza vozrastanii intensivnosti kosmicheskikh luchei (GLE) s uchetom ikh klassifikatsii // Mezhdunarodnyi zhurnal prikladnykh i fundamental'nykh issledovanii. 2013. N 12. P. 101–104.
15. Troitskaya I.K., Maiorov A.G., Malakhov V.V., Modzelevska R., Rodenko S.A. Izuchenie 27-dnevnykh variatsii potoka galakticheskikh kosmicheskikh luchei po dannym eksperimenta PAMELA // Izv. RAN. Ser. fiz. 2019. V. 83, N 5. P. 635–637. DOI: 10.1134/S0367676519050387.
16. Belov A.V., Gvishiani A.D., Getmanov V.G., Kovylyaeva A.A., Solov'ev A.A., Chinkin V.E., Yanke V.G., Yashin I.I. Raspoznavanie geomagnitnykh bur' na osnove neirosetevykh model'nykh otsenok Dst-indeksov // Izv. RAN. Teoriya i sistemy upravleniya. 2022. N 1. P. 83–94. DOI: 10.31857/S0002338822010048.
17. Baza dannykh neitronnykh monitorov. URL: http://www.nmdb.eu (data obrashcheniya: 5.06.2025).
18. Dannye Dst-indeksa. URL: http://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html (data obrashcheniya: 5.06.2025).
19. Mandrikova O., Mandrikova B. Hybrid model of natural time series with neural network component and adaptive nonlinear scheme: Application for anomaly detection // Mathematics. 2024. V. 12. P. 1079. DOI: 10.3390/math12071079.
20. Mala S. Veivlety v obrabotke signalov. M.: Mir, 2005. 671 p.
21. Mandrikova O., Mandrikova B. Hybrid method for detecting anomalies in cosmic ray variations using neural networks autoencoder // Symmetry. 2022. V. 14. P. 744. DOI: 10.3390/sym14040744.
22. Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki. Kn. 1. M.: Sovetskoe radio, 1974. 549 p.
23. Mandrikova O., Mandrikova B. Method for detection of Forbush effects in cosmic ray flux according to neutron monitors data using wavelet transform // Russ. J. Earth Sci. 2025. V. 25, N 2. DOI: 10.2205/2025ES000978.
24. Dobeshi I. Desyat' lektsii po veivletam. Izhevsk: NITS «Regulyarnaya i khaoticheskaya dinamika», 2001. 464 p.
26. Institute of Applied Geophysics. URL: http://ipg.geospace.ru/ (last access: 5.05.2025).
26. Laboratoriya solnechnoi astronomii IKI RAN i ISZF SO RAN. URL: https://xras.ru/magnetic_storms.html (data obrashcheniya: 5.05.2025).
27. Avakyan S.V., Voronin N.A., Dubarenko K.A. Vliyanie magnitnykh bur' na avariinost' sistem elektroenergetiki, avtomatiki i svyazi // Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. 2012. V. 154, N 3–2. P. 253–266.