Vol. 39, issue 02, article # 11

Riabova S. A. Sixteen-day atmospheric planetary wave in variations in the Earth's magnetic field according to data from European observatories. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 170–175. DOI: 10.15372/AOO20260211 [in Russian].
Copy the reference to clipboard

Abstract:

In order to study the dynamics of the Earth's atmosphere, it is of interest to examine the frequency content of geomagnetic field variations in the range of the sixteen-day atmospheric planetary wave period (from 14.5 to 18 days). The spectra of Earth's magnetic field variations recorded between 2000 and 2023 at three European mid-latitude magnetic observatories, the Belsk Observatory (eastern Europe), the Furstenfeldbruck Observatory (central Europe), and the Dourbes Observatory (western Europe), were analyzed. Using the Lomb–Scargle periodogram method, harmonics associated with the modulation effect of long-period variations and tidal effects were identified in the spectrum in the range from 14.5 to 18 days. The analysis showed that the spectral content of geomagnetic variations does not depend on the longitude of the observation point (the points are located at approximately the same latitude). Spectral harmonics caused by the modulation wave with a semiannual variation of the second harmonic of the sunspot rotation cycle and the declination tidal were identified. For the Msf tidal wave, harmonics were identified due to the modulation effect of the 11-year solar activity cycle (Schwabe), the fourth harmonic of the 22-year solar activity cycle, and annual and semiannual variations. Spectral harmonics are clearly distinguished in the spectra, whose periods correspond to the modulation effect of the 11-year solar activity cycle, the fourth harmonic of the 22-year solar activity cycle, and annual and semiannual variations on the 16-day planetary wave. The spectral analysis results confirm the influence of processes observed in the lower neutral atmosphere on the dynamics of the upper atmosphere. The results can be used to develop atmospheric dynamics models.

Keywords:

variation, Earth's magnetic field, tidal wave, Schwabe cycle, planetary wave, modulation, spectrum, Lomb–Scargle method

References:

1. Shalimov S.L., Lapshin V.M., Khaldopis Kh. Struktura planetarnykh vozmushchenii sredneshirotnoi ionosfery po nablyudeniyam so sputnikov GPS // Kosmicheskie issledovaniya. 2006. V. 44, N 6. P. 483–487.
2. Shpynev B.G., Oinats A.V., Lebedev V.P., Chernigovskaya M.A., Orlov I.I., Belinskaya A.Yu., Grekhov O.M. Proyavlenie gravitatsionnykh prilivov i planetarnykh voln v dolgovremennykh variatsiyakh geofizicheskikh parametrov // Geomagnetizm i aeronomiya. 2011. V. 54, N 4. P. 540–552.
3. Deng W., Salah J.E., Clar R.R., Franke S.J., Fritts D.C., Hoffmann P., Kuerschner D., Manson A.H., Meek C.E., Murphy D. Coordinated global radar observations of tidal and planetary waves in the mesosphere and lower thermosphere during January 20–30, 1993 // J. Geophys. Res. 1997. V. 102, N A4. P. 7307–7318. DOI: 10.1029/96ja01630.
4. Lawrence A.R., Jarvis M.J. Initial comparisons of planetary waves in the stratosphere, mesosphere and ionosphere over Antarctica // Geophys. Res. Lett. 2001. V. 28. P. 203–206. DOI: 10.1029/2000GL000116.
5. Danilov A.D., Kazimirovskii E.S., Vergasova G.V., Hachikyan G.Ya. Meteorologicheskie effekty v ionosfere. L.: Gidrometeoizdat, 1987. 272 p.
6. Shalimov S.L. Atmosfernye volny v plazme ionosfery. M.: IFZ RAN, 2018. 390 p.
7. Forbes J.M., Leveroni S. Quasi 16-day oscillation of the ionosphere // Geophys. Res. Lett. 1992. V. 19. P. 981–984. DOI: 10.1029/92GL00399.
8. Fraser G. The 5-day wave and ionospheric absorption // J. Atmos. Terr. Phys. 1977. V. 39. P. 121–124.
9. Hagan M.E., Forbes J.M., Vial F. Numerical investigation of the propagation of the quasi-two-day wave into the lower thermosphere // J. Geophys. Res. 1993. V. 98. P. 23193–23205. DOI: 10.1029/93JD02779.
10. Ryabova S.A., Shalimov S.L. Atmosfernye planetarnye volny na ionosfernykh vysotakh po dannym observatorii Moskva (IZMIRAN) // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 6. P. 731–739. DOI: 10.31857/S0002351523060081.
11. Ryabova S.A., Shalimov S.L. O variatsiyakh parametrov plazmy ionosfery, nablyudaemykh posredstvom ionozonda i na magnitnoi stantsii v diapazone periodov planetarnykh voln // Fizika Zemli. 2021. N 6. P. 122–130. DOI: 10.31857/S0002333721060065.
12. Rossby C.G. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action // J. Marine Res. 1939. V. 2, N 1. P. 38–55.
13. Koval' A.V., Gavrilov N.M., Pogorel'tsev A.I., Shevchuk N.O. Rasprostranenie statsionarnykh planetarnykh voln v verkhnei atmosfere pri raznykh urovnyakh solnechnoi aktivnosti // Geomagnetizm i aeronomiya. 2018. V. 58, N 2. P. 295–303.
14. Koval A.V., Gavrilov N.M., Didenko K.A., Ermakova T.S., Savenkova E.N. Sensitivity of the 4–10-day planetary wave structures in the middle atmosphere to the solar activity effects in the thermosphere // Atmosphere. 2022. V. 13. DOI: 10.3390/atmos13081325.
15. Didenko K.A., Ermakova T.S., Pogorel'tsev A.I., Rakushina E.V. Klimaticheskaya izmenchivost' stratosferno-troposfernykh vzaimodeistvii, nablyudaemaya v poslednie desyatiletiya // Vestn. KRAUNTS. Fiz.-mat. nauki. 2021. V. 37, N 4. P. 159–170.
16. Ryabova S.A., Shalimov S.L. O geomagnitnykh variatsiyakh, nablyudaemykh na poverkhnosti Zemli v diapazone periodov planetarnykh voln // Fizika Zemli. 2021. N 1. P. 51–60. DOI: 10.31857/S0002333721010075.
17. Kohsiek A., Glassmeier K.H., Hirooka T. Periods of planetary waves in geomagnetic variations // Ann. Geophys. 1995. V. 13. P. 168–176. DOI: 10.1007/s00585-995-0168-y.
18. Charney J.G., Drazin P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. 1961. V. 66. P. 83–109.
19. Karami K., Braesicke P., Sinnhuber M., Versick S. On the climatological probability of the vertical propagation of stationary planetary waves // Atmos. Chem. Phys. 2016. V. 16. P. 8447–8460. DOI: 10.5194/acp-16-8447-2016.
20. Zhang Z., Hu X., Xu Q., Cai B., Yang J. Research on 16-day planetary waves in the mid-latitude troposphere, stratosphere, mesosphere, and lower thermosphere with langfang dual-frequency ST-M radar data // Ann. Geophys. 2025. DOI: 10.5194/angeo-2024-27.
21. Salby M.L. Survey of planetary-scale traveling waves: The state of theory and observations // Rev. Geophys. Space Phys. 1984. V. 22. P. 209–236.
22. Riabova S.A., Shalimov S.L. Features of geomagnetic variations in the period range from 12 to 17 days according to the Mikhnevo Observatory // Proc. SPIE. 2020. V. 11560. DOI: 10.1117/12.2575699.
23. Adushkin V.V., Ryabova S.A., Spivak A.A. Geomagnitnye effekty prirodnykh i tekhnogennykh protsessov. M.: GEOS, 2021. 264 p.
24. Gol'denberg L.M., Matyushkin B.D., Polyak M.N. Tsifrovaya obrabotka signalov: Spravochnik. M.: Radio i svyaz', 1985. 312 p.
25. Marpl-mladshii S.L. Tsifrovoi spektral'nyi analiz i ego prilozheniya. M.: Mir, 1990. 265 p.
26. Lomb N.R. Least-squares frequency analysis of unequally spaced data // Astrophys. Space Sci. 1976. V. 39. Р. 447–462.
27. Scargle J.D. Studies in astronomical time series analysis II. Statistical aspects of spectral analysis of unevenly sampled data // Astrophys. J. 1982. V. 263, N 2. P. 835–853.
28. Ryabova S.A. Issledovanie mul'tifraktral'nosti temperatury po dannym meteostantsii Tsugshpittse // Izv. RAN. Fiz. atmosf. i okeana. 2024. V. 60, N 1. P. 26–32. DOI: 10.31857/S0002351524010038.
29. Sheremet'eva O.V. Sostavlyayushchie geomagnitnykh variatsii s chastotami prilivnykh voln // Geomagnetizm i aeronomiya. 2011. V. 51, N 2. P. 224–228.
30. Andreev V.S. Teoriya nelineinykh elektricheskikh tsepei: ucheb. posobie dlya vuzov. M.: Radio i svyaz', 1982. 280 p.