Vol. 39, issue 02, article # 10

Romanchenko I. I., Cheremisin A. A., Novikov P. V., Marichev V. N., Bochkovsky D. A. Stratospheric aerosol from Siberian forest fires according to lidar observations in July 2022 in Tomsk. // Optika Atmosfery i Okeana. 2026. V. 39. No. 02. P. 161–169. DOI: 10.15372/AOO20260210 [in Russian].
Copy the reference to clipboard

Abstract:

Soot aerosol from forest fires injected into the stratosphere can influence climate on a global scale, similar to volcanic aerosol. This paper examined the stratospheric loading with soot aerosol from forest fires in Eastern Siberia, as well as the occurrence of volcanic aerosol over Western Siberia. An episode of ground-based lidar observation in July 2022, where aerosol layers were detected in the stratosphere above Tomsk at approximately 11 km and 20–25 km is considered. The origin of these layers is analyzed using air mass trajectories with control of their aerosol content based on data from the CALIPSO satellite lidar and using atmospheric and surface sensing data from the Suomi-NPP and Himawari-8 satellites. It is shown that the sources of in the lower stratosphere aerosol loading at an altitude of about 11 km are the fires in Eastern Siberia, which led to the formation of powerful pyrocumulative clouds. The location and time of formation of these clouds are determined. It is also shown that the aerosol layers at altitudes 20–25 km are associated with the eruption of the Hunga Tonga-Hunga Ha'apai volcano, which erupted in the Southern Hemisphere in January 2022. The results are of significant interest for predicting climate change on regional and global scales.

Keywords:

stratosphere, pyrocumulonimbus cloud, soot aerosol, volcanic aerosol, trajectory analysis, satellite sounding, lidar

Figures:

References:

1. Pueschel R.F., Verma S., Rohatschek H., Ferry G.V., Boiadjieva N., Howard S.D., Strawa A.W. Vertical transport of anthropogenic soot aerosol into the middle atmosphere// J. Geophys. Res. 2000. N 105(D3). P. 3727–3736. DOI: 10.1029/1999JD900505.
2. Fromm M., Lindsey D.T., Servranckx R., Yue G., Trickl T., Sica R., Doucet P., Godin-Beekmann S. The untold story of Pyrocumulonimbus // Bull. Am. Meteorol. Soc. 2010. V. 91, N 9. P. 1193–1210. DOI: 10.1175/2010BAMS3004.1.
3. Ansmann A., Baars H., Chudnovsky A., Mattis I., Veselovskii I., Haarig M., Seifert P., Engelmann R., Wandinger U. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017 // Atmos. Chem. Phys. 2018. V. 18. P. 11831–11845. DOI: 10.5194/acp-18-11831-2018.
4. Khaykin S.M., Godin-Beekmann S., Hauchecorne A., Pelon J., Ravetta F., Keckhut P. Stratospheric smoke with unprecedentedly high backscatter observed by lidars above southern France // Geophys. Res. Lett. 2018. V. 45. P. 1639–1646. DOI: 10.1002/2017gl076763.
5. Siddaway J.M., Petelina S.V. Transport and evolution of the 2009 Australian Black Saturday bush fire smoke in the lower stratosphere observed by OSIRIS on Odin // J. Geophys. Res. 2011. V. 116. P. D06203. DOI: 10.1029/2010JD015162.
6. Vaughan G., Draude A.P., Ricketts H.M.A., Schultz D.M., Adam M., Sugier J., Wareing D.P. Transport of Canadian forest fire smoke over the UK as observed by lidar // Atmos. Chem. Phys. 2018. V. 18. P. 11375–11388. DOI: 10.5194/acp-18-11375-2018.
7. Gerasimov V.V., Zuev V.V., Savelyeva E.S. Sledy kanadskikh pirokumulyativnykh oblakov v stratosfere nad Tomskom v June–July 1991 year // Optika atmosf. i okeana. 2019. V. 32, N 1. P. 39–46. DOI: 10.15372/AOO20190106; Gerasimov V.V., Zuev V.V., Savelyeva E.S. Traces of Canadian pyrocumulative clouds in the stratosphere over Tomsk in June–July 1991 // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 39–46.
8. Ansmann A., Ohneiser K., Chudnovsky A., Baars H., Engelmann R. CALIPSO Aerosol-typing scheme misclassified stratospheric fire smoke: Case study from the 2019 Siberian wildfire season // J. Front. Environ. Sci. 2021. V. 9. A. 769852. DOI: 10.3389/fenvs.2021.769852.
9. Boers R., de Laat A.T., Stein Zweers D.C., Dirksen R.J. Lifting potential of solar-heated aerosol layers // Geophys. Res. Lett. 2010. V. 37, N 24. P. L24802. DOI: 10.1029/2010GL045171.
10. Cheremisin A.A., Vassilyev Yu.V., Horvath H. Gravito-photophoresis and aerosol stratification in the atmosphere // J. Aerosol. Sci. 2005. V. 36. P. 1277–1299. DOI: 10.1016/j.jaerosci.2005.02.003.
11. Ansmann A., Veselovskii I., Ohneiser K., Chudnovsky A. Comment on “stratospheric aerosol composition observed by the atmospheric chemistry experiment following the 2019 Raikoke eruption” by Boone et al. // J. Geophys. Res.: Atmos. 2023. N 129. P. e2022JD038080. DOI: 10.1029/2022JD038080.
12. Boone C.D., Bernath P.F., Labelle K., Crouse J. Stratospheric aerosol composition observed by the Atmospheric Chemistry Experiment following the 2019 Raikoke eruption // J. Geophys. Res.: Atmos. 2022. N 127. P. e2022JD036600. DOI: 10.1029/2022JD036600.
13. Cheremisin A.A., Marichev V.N., Bochkovskii D.A., Novikov P.V., Romanchenko I.I. Stratosfernyi aerozol' sibirskikh lesnykh pojarov po dannym lidarnykh nablyudenii v Tomske v August 2019 year // Optika atmosf. i okeana. 2021. V. 34, N 11. P. 898–905. DOI: 10.15372/AOO20211110; Cheremisin A.A., Marichev V.N., Bochkovskii D.A., Novikov P.V., Romanchenko I.I. Stratospheric aerosol of Siberian forest fires according to lidar observations in Tomsk in August 2019 // Atmos. Ocean. Opt. 2022. V. 35, N 1. P. 57–64.
14. Snoun H., Alahmadi M.M., Nikfa A., Arif A., Hatheway W., Alamro M.A., Mihoub A., Krichen M. Data assimilation enhances WRF-Chem performance in modeling volcanic ash clouds from Hunga Tonga-Hunga Ha’apai eruption // J. Meteorol. Res. 2024. N 38. P. 1122–1140. DOI: 10.1007/s13351-024-4029-6.
15. Bian J., Li D., Bai Z., Xu J., Li Q., Wang H., Vömel H., Wienhold F.G., Peter T. First detection of aerosols of the Hunga Tonga eruption in the Northern Hemisphere stratospheric westerlies // Sci. Bull. 2023. V. 68, N 6. P. 574–577. DOI: 10.1016/j.scib.2023.03.002.
16. Marichev V.N., Bochkovskii D.A Modernizatsiya lidarnogo kompleksa stantsii vysotnogo zondirovaniya atmosfery IOA SO RAN // Vestn. KRAUNTS. Fiz.-mat. nauki. 2018. N 5(25). P. 17–23.
17. CALIPSO. Lidar Browse Images. URL: https://www-calipso.larc.nasa.gov/products/lidar/ browse_images/production/ (last access: 25.05.2025).
18. CALIPSO. User’s Guide. Browse Tutorial. URL: https://www-calipso.larc.nasa.gov/resources/ calipso_users_guide/browse/index.php (last access: 25.05.2025).
19. NRT VIIRS 375 m Active Fire product VNP14IMGT distributed from NASA FIRMS. URL: https://earthdata.nasa.gov/firms (last access: 25.05.2025).
20. Data integration and analysis system program: official site. URL: https://diasjp.net/en/ (last access: 25.05.2025).
21. Stober G., Vadas S.L., Becker E., Liu A., Kozlovsky A., Janches D., Qiao Z., Krochin W., Shi G., Yi W., Zeng J., Brown P., Vida D., Hindley N., Jacobi C., Murphy D., Burit R., Andrioli V., Batista P., Marino J., Palo S., Thorsen D., Tsutsumi M., Gulbrandsen N., Nozawa S., Lester M., Baumgarten K., Kero J., Belova E., Mitchell N., Moffat-Griffin T., Li N. Gravity waves generated by the Hunga Tonga-Hunga Ha’apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model // Atmos. Chem. Phys. 2024. N 24. P. 4851–4873. DOI: 10.5194/egusphere-2023-1714.
22. Hoffmann L., Spang R. An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses // Atmos. Chem. Phys. 2022. V. 22, N 6. P. 4019–4046. DOI: 10.5194/acp-22-4019-2022.
23. Cheremisin A.A., Novikov P.V., Shnipov I.S., Bychkov V.V., Shevtsov B.M. Lidar observations and the mechanism of formation of the structure of aerosol layers in the stratosphere and mesosphere over Kamchatka // Geomag. Aeron. 2012. V. 52, N 5. P. 690–700. DOI: 10.1134/S0016793212050027.
24. Cheremisin A.A., Marichev V.N., Novikov P.V., Pavlov A.N., Sрmirko K.A., Bochkovskii D.A. Otsenka perenosa vulkanicheskogo aerozolya v stratosfere nad Tomskom i Vladivostokom v 2011 year po dannym lidarnykh nablyudenii // Meteorol. i gidrol. 2019. N 5. P. 50–62.