Vol. 39, issue 01, article # 4

Drakon A. V., Eremin A. V., Kolotushkin R. N., Timoshenko A. A.., Khodyko E. S. Mass spectrometric study of primary aerosol origination in an ethylene/air flame. // Optika Atmosfery i Okeana. 2026. V. 39. No. 01. P. 27–36. DOI: 10.15372/AOO20260104 [in Russian].
Copy the reference to clipboard

Abstract:

Emissions of carbon compounds formed during the combustion of hydrocarbon fuels change the thermal balance of the atmosphere, which leads to global warming. Reliable methods for diagnosing and monitoring emissions are necessary to control and assess the content of carbon compounds in the atmosphere. The paper presents a methodology for studying the formation of organic and black carbon aerosol. A flat ethylene/air laminar flame was used as a reactor in various experimental modes. An experimental setup was developed and used to analyze flame gas components by quadrupole mass spectrometry. The signal intensities were compared depending on the mass-to-charge ratio in the range 0–100. It has been shown that kinetic simulation and experimental results are qualitatively consistent when describing such components as H2O, O2, and CO2. It has also been shown that an increase in the equivalence ratio increases the concentrations of compounds associated with the formation of organic and black carbon aerosols. The results can be used to develop diagnostic and monitoring methods for organic and soot aerosols in the ambient air by tracking concentrations of signature compounds.

Keywords:

black carbon aerosol, organic aerosol, combustion, mass spectrometry, soot formation, benzene

References:

1. Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vliyanie estestvennykh i antropogennykh aerozolej na global'nyj i regional'nyj klimat // Ros. khim. zhurn. 2008. V. LII, N 5. P. 112–119.
2. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., De Angelo B.J., Flanner M.G., Ghan S., Karcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment // J. Geophys. Res.: Atmos. 2013. V. 118. P. 5380–5552. DOI: 10.1002/jgrd.50171.
3. Hadley O.L., Kirchstetter T.W. Black-carbon reduction of snow albedo // Nat. Clim. Change. 2012. V. 2, N 6. P. 437–440. DOI: 10.1038/nclimate1433.
4. Sakerin S.M., Kabanov D.M., Kruglinsky I.A., Pol’kin V.V., Pochufarov A.O. Osobennosti prostranstvennogo raspredeleniya atmosfernogo aerozolya v Evrazijskom sektore Severnogo Ledovitogo okeana // Optika atmosf. i okeana. 2024. V. 37, N 9. P. 772–778. DOI: 10.15372/AOO20240907; Sakerin S.M., Kabanov D.M., Kruglinsky I.A., Pol’kin V.V., Pochufarov A.O. Features of the spatial distribution of atmospheric aerosol in the Eurasian sector of the Arctic Ocean // Atmos. Ocean. Opt. 2024. V. 37, N 6. P. 881–889.
5. De Falco G., Colarusso C., Terlizzi M., Popolo A., Pecoraro M., Commodo M., Minutolo P., Sirignano M., D'Anna A., Aquino R.P., Pinto A., Molino A., Sorrentino R. Chronic obstructive pulmonary disease-derived circulating cells release IL-18 and IL-33 under ultrafine particulate matter exposure in a caspase-1/8-independent manner // Front. Immunol. 2017. V. 8, N 1415. DOI: 10.3389/fimmu.2017.01415.
6. Nemmar A., Hoet P.H.M., Vanquickenborne B., Dinsdale D., Thomeer M., Hoylaerts M.F., Vanbilloen H., Mortelmans L., Nemery B. Passage of inhaled particles into the blood circulation in humans // Circulation. 2002. V. 105, N 4. P. 411–414. DOI: 10.1161/hc0402.104118.
7. Lohmann U., Friebel F., Kanji Z.A., Mahrt F., Mensah A.A., Neubauer D. Future warming exacerbated by aged-soot effect on cloud formation // Nat. Geosci. 2020. V. 13, N 10. P. 674–680. DOI: 10.1038/s41561-020-0631-0.
8. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. Effect of the size and structure of soot particles synthesized during pyrolysis and combustion of hydrocarbons on their optical properties // High Temperature. 2022. V. 60, N 3. P. 374–384. DOI: 10.1134/S0018151X22020055.
9. Eremin A.V., Gurentsov E.V., Kolotushkin R.N., Khodyko E.S. Analysis of the soot particles structure in a flame by Raman spectroscopy // Tech. Phys. 2024. V. 94, N 5. P. 698–706. DOI: 10.61011/TP.2024.05.58519.119-23.
10. Michelsen H.A., Colket M.B., Bengtsson P.-E., D’Anna A., Desgroux P., Haynes B.S., Miller J.H., Nathan G.J., Pitsch H., Wang H. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions // ACS Nano. 2020. V. 14, N 10. P. 12470–12490. DOI: 10.1021/acsnano.0c06226.
11. Apicella B., Pre P., Alfe M., Ciajolo A., Gargiulo V., Russo C., Tregrossi A., Deldique D., Rouzaud J.N. Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM) // Proc. Combust. Inst. 2015. V. 35, N 2. P. 1895–1902. DOI: 10.1016/j.proci.2014.06.121.
12. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. The dependence of the sublimation temperature of the soot particles formed in the flames on their size and structure // Tech. Phys. 2022. V. 92, N 1. P. 53–60. DOI: 10.21883/TP.2022.01.52533.206-21.
13. Gurentsov E.V., Eremin A.V., Kolotushkin R.N., Khodyko E.S. Korrelyatsiya izmeneniya opticheskikh svoistv chastits sazhi, sintezirovannykh v plameni predvaritel'no-peremeshannykh gazov, s rostom ikh srednego razmera // Kratkie soobshcheniya po fizike. V. 49, N 12. P. 35–45. DOI:  10.3103/ S1068335622120028.
14. Liu F., Yon J., Fuentes A., Lobo P., Smallwood G.J., Corbin J.C. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function // Aerosol Sci. Technol. V. 54, N 1. P. 33–51. DOI: 10.1080/02786826.2019.1676878.
15. Gurentsov E.V., Eremin A.V., Kolotushkin R.N. K voprosu o vybore opticheskikh svojstv chastits sazhi dlya opisaniya pogloshcheniya solnechnogo izlucheniya v atmosfere i na poverkhnosti Zemli // Optika atmosf. i okeana. 2022. V. 35, N 8. P. 626–631. DOI: 10.15372/AOO20220805; Gurentsov E.V., Eremin A.V., Kolotushkin R.N. Choice of optical properties of soot particles for description of solar radiation absorption in the atmosphere and on the Earth’s surface // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 645–650.
16. Wang H. Formation of nascent soot and other condensed-phase materials in flames // Proc. Combust. Inst. 2011. V. 33, N 1. P. 41–67. DOI: 10.1016/j.proci.2010.09.009.
17. Abid A.D., Tolmachoff E.D., Phares D.J., Wang H., Liu Y., Laskin A. Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping // Proc. Combust. Inst. 2009. V. 32, N 1. P. 681–688. DOI: 10.1016/j.proci.2008.07.023.
18. Sgro L.A., Barone A.C., Commodo M., D’Alessio A., De Filippo A., Lanzuolo G., Minutolo P. Measurement of nanoparticles of organic carbon in non-sooting flame conditions // Proc. Combust. Inst. 2009. V. 32, N 1. P. 689–696. DOI: 10.1016/j.proci.2008.06.216.
19. Gerasimov I.E., Bolshova T.A., Osipova K.N., Dmitriev A.M., Knyazkov D.A., Shmakov A.G. Flame structure at elevated pressure values and reduced reaction mechanisms for the combustion of CH4/H2 mixtures // Energies. 2023. V. 16, N 22. P. 7489. DOI: 10.3390/en16227489.
20. Mohr C., Huffman A., Cubison M.J., Aiken A.C., Docherty K.S., Kimmel J.R., Ulbrich I.M., Hannigan M., Jimenez J.L. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations // Environ. Sci. Technol. 2009. V. 43, N 7. P. 2443–2449. DOI: 10.1021/es8011518.
21. Grotheer H.-H., Pokorny H., Barth K.-L., Thierley M., Aigner M. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames // Chemosphere. 2004. V. 57, N 10. P. 1335–1342. DOI: 10.1016/j.chemosphere.2004.08.054.
22. Desgroux P., Faccinetto A., Mercier X., Mouton T., Aubagnac Karkar D., El Bakali A. Comparative study of the soot formation process in a “nucleation” and a “sooting” low pressure premixed methane flame // Combust. Flame. 2017. V. 184. P. 153–166. DOI: 10.1016/j.combustflame.2017.05.034.
23. Sabbah H., Commodo M., Picca F., De Falco G., Minutolo P., D’Anna A., Joblin C. Molecular content of nascent soot: Family characterization using two-step laser desorption laser ionization mass spectrometry // Proc. Combust. Inst. 2021. V. 38, N 1. P. 1241–1248. DOI: 10.1016/j.proci.2020.09.022.
24. Reilly P.T.A., Gieray R.A., Whitten W.B., Ramsey J.M. Direct observation of the evolution of the soot carbonization process in an acetylene diffusion flame via real-time aerosol mass spectrometry // Combust. Flame. 2000. V. 122, N 1–2. P. 90–104. DOI: 10.1016/S0010-2180(00)00105-X.
25. Carbone F., Canagaratna M.R., Lambe A.T., Jayne J.T., Worsnop D.R., Gomez A. Exploratory analysis of a sooting premixed flame via on-line high resolution (APi–TOF) mass spectrometry // Proc. Combust. Inst. 2019. V. 37, N 1. P. 919–926. DOI: 10.1016/j.proci.2018. 08.020.
26. International Sooting Flame Workshop. URL: https://www.adelaide.edu.au / cet / isfworkshop / data-sets /laminar-flames (last access: 28.08.2025).
27. Zhao B., Yang Z., Wang J., Johnston M.V., Wang H. Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer // Aerosol Sci. Technol. 2003. V. 37, N 8. P. 611–620. DOI: 10.1080/02786820300908.
28. McEnally C.S., Köylü Ü.Ö., Pfefferle L.D., Rosner D.E. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples // Combust. Flame. 1997. V. 109, N 4. P. 701–720. DOI: 10.1016/S0010-2180(97)00054-0.
29. Haynes B.S., Wagner H.Gg. Soot formation // Prog. Energy Combust. Sci. 1981. V. 7, N 4. P. 229–273. DOI: 10.1016/0360-1285(81)90001-0.
30. Goodwin D.G., Moffat H.K., Schoegl I., Speth R.L., Weber B.W. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. URL: https://zenodo.org/records/45206 (last access: 28.08.2025). DOI: 10.5281/ZENODO.8137090.
31. Ranzi E., Cavallotti C., Cuoci A., Frassoldati A., Pelucchi M., Faravelli T. New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes // Combust. Flame. 2015. V. 162, N 5. P. 1679–1691. DOI: 10.1016/j.combustflame.2014.11.030.
32. Saggese C., Ferrario S., Camacho J., Cuoci A., Frassoldati A., Ranzi E., Wang H., Faravelli T. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame // Combust. Flame. 2015. V. 162, N 9. P. 3356–3369. DOI: 10.1016/j.combustflame.2015.06.002.
33. Saggese C., Cuoci A., Frassoldati A., Ferrario S., Camacho J., Wang H., Faravelli T. Probe effects in soot sampling from a burner-stabilized stagnation flame // Combust. Flame. 2016. V. 167. P. 184–197. DOI: 10.1016/j.combustflame.2016.02.013.
34. Camacho J., Liu C., Gu C., Lin H., Huang Z., Tang Q., You X., Saggese C., Li Y., Jung H., Deng L., Wlokas I., Wang H. Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame // Combust. Flame. 2015. V. 162. P. 3810–3822. DOI: 10.1016/j.combustflame.2015.07.018.
35. Wang H., Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames // Combust. Flame. 1997. V. 110, N 1–2. P. 173–221. DOI: 10.1016/S0010-2180(97)00068-0.
36. Lebedev A.T., Hayes R.N., Bowie J.H. Concerning the formation of C3H3O+ and C4H7+ ions from the cyclohexanone molecular ion // Rapid Commun. Mass Spectrom. 1991. V. 5, N 4. P. 160–163. DOI: 10.1002/rcm.1290050405.