Vol. 37, issue 08, article # 2
Copy the reference to clipboard
Abstract:
Methane is one of key greenhouse gases, whose concentration has been increasing in recent decades. This leads to an increase in the temperature of the Earth's surface. To monitor the methane content in the atmosphere the accurate knowledge of the absorption spectrum of CH4 molecule is required. In this work, the parameters of methane absorption lines broadened by atmospheric air pressure are presented in the spectral region 4345–4360 cm−1. Data were obtained from spectra recorded at a Bruker IFS 125HR Fourier spectrometer with a spectral resolution of 0.005–0.01 cm−1 at room temperature and five values of buffer gas pressure. Atmospheric transmission was simulated using the obtained results and the line parameters from HITRAN and GEISA spectroscopic databases. The comparison with measured atmospheric solar spectra shows that the use of the CH4 absorption line parameters obtained in this work gives the best result in terms of root-mean-square deviation.
Keywords:
methane, absorption lines, atmospheric transmission, spectroscopic databases
Figures:
References:
1. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (eds.). Cambridge: Cambridge University Press, 2021. DOI: 10.1017/ 9781009157896.
2. The Encyclopedia of the Solar System, Third Edition / T. Spohn, D. Breuer, T.V. Johnson (eds.). Amsterdam: Elsevier, 2014. DOI: 10.1016/ C2010-0-67309-3.
3. Sánchez-López A., López-Puertas M., García-Comas M., Funke B., Fouchet T., Snellen I.A.G. The CH4 abundance in Jupiter’s upper atmosphere // Astron. Astrophys. 2022. V. 662. A91. DOI: 10.1051/0004-6361/202141933.
4. Gordon I.E, Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M. Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A, Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F.M., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky P.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J. Vander, Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database. //J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
5. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia-Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/j.jms.2021.111510.
6. Daumont L., Nilitin A.V., Thomas X., Regalia L., Von der Heyden P., Tyuterev Vl.G., Rey M., Boudon V., Wenger C., Loete M., Brown L.R. New assignments in the 2 mm transparency window of the 12CH4 octad band system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 116. P. 101–109. DOI: 10.1016/j.jqsrt.2012.08.025.
7. Brown L.R., Chris Benner D., Champion J.-P., Malathy Devi V., Fejard I., Gamache R.R., Gabard T., Hilico C., Lavorel B., Loete M., Mellau G.Ch., Nikitin A., Pine A.S., Predoi-Cross A., Rinsland C.P., Robert O., Sams R.L., Smith M.A.H., Tashkun S.A., Tyuterev Vl.G. Methane line parameters in HITRAN // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 219–238. DOI: 10.1016/S0022-4073(03)00155-9.
8. Predoi-Cross A., Brawley-Tremblay M., Brown L.R., Malathy Devi V., Chris Benner D. Multispectrum analysis of 12CH4 from 4100 to 4635 cm-1: II Air-broadening coefficients (widths and shift) // J. Mol. Spectrosc. 2006. V. 236. P. 201–215. DOI: 10.1016/j.jms.2006. 01.013.
9. Albert S., Bauerecker A., Boudon V., Brown L.R., Champion J.P., Loete M., Nikitin A., Quack M. Global frequency and intensity analysis of 12CH4 in the 0–4800 cm-1 region // Chem. Phys. 2009. V. 356. P. 131–146. DOI: 10.1016/j.chemphys.2008.10.019.
10. Pan L., Edwards D.P., Gille J.C., Smith M.W., Drummond J.R. Satellite remote sensing of tropospheric CO and CH4: Forward model studies of the MOPITT instrument // Appl. Opt. 1995. V. 34, N 30. P. 6976–6988. DOI: 10.1364/AO.34.006976.
11. Chesnokova T.Yu., Boudon V., Gabard T., Gribanov K.G., Firsov K.M., Zakharov V.I. Near-infrared radiative transfer modeling with different CH4 spectroscopic databases to retrieve atmospheric methane total amount // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2676–2682. DOI: 10.1016/j.jqsrt.2011.08.005.
12. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements of air-broadening parameters of water vapour transitions in the 5090–7490 cm−1 spectral region // Mol. Phys. 2023. V. 121. P. 5–15. DOI: 10.1080/00268976.2023.2216133.
13. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100. DOI: 10.1016/j.jqsrt.2013.05.034.
14. Tran H., Ngo N.H., Hartmann J.-M. Efficient computation of some speed-dependent isolated line profiles // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 199–203. DOI: 10.1016/j.jqsrt.2013.06.015.
15. Loos J., Birk M., Wagner G. Measurement of positions, intensities and self-broadening lineshape parameters of H2O lines in the spectral ranges 1850–2280 cm–1 and 2390–4000 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 119–132. DOI: 10.1016/j.jqsrt.2017.02.013.
16. Deichuli V.M., Petrova T.M., Solodov A.M., Solodov A.A., Fedorova A.A. Water vapor absorption line parameters in the 6760–7430 cm-1 region for application to CO2- rich planetary atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 293. P. 108386. DOI: 10.1016/j.jqsrt.2023.108850.
17. Gribanov K., Jouzel J., Bastrikov V., Bonne J.-L., Breon F.-M., Butzin M., Cattani O., Masson-Delmotte V., Rokotyan N., Werner M., Zakharov V. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing) // Atmos. Chem. Phys. 2014. V. 14. P. 5943–5957. DOI: 10.5194/ acp-14-5943-2014.
18. The NCEP/NCAR Reanalysis Project. Boulder: Physical Sciences Laboratory, 2024. URL: http://www.esrl.noaa.gov/psd/data/reanalysis/ (last access: 00.00.0000).
19. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredel M., Saha S., White G., Woollen J., Zhu Y., Leetma A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewsk C., Wang J., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Am. Meteorol. Soc. 1996. V. 77. P. 437–472. DOI: 10.1175/1520-0477.
20. Hase F., Hannigan J.W., Coffey M.T., Goldman A., Höpfner M., Jones N.B., Rinsland C.P., Wood S.W. Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 87. P. 25–52. DOI: 10.1016/j.jqsrt.2003.12.008.