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We describe in this paper algorithms and some results of constructing optimal 
mode expansion of random phase of an optical wave in turbulent atmosphere. We also 
present the obtained analytical form of the fundamental Karhunen–Loeve–Obukhov 
(K–L–O) modes represented in Zernike basis. 

 
In the first part of the paper we have formulated a 

semi–analytical approach to the problem of obtaining the 
optimal mode expansion of a random phase which is 
registered by wave front sensors in the systems of 
atmospheric adaptive optics. The use of such an expansion 
makes it possible to minimize the ensemble–averaged error 
of approximation of random phase. The approach is based 
on the theory of statistically orthogonal Karhunen–Loeve–
Obukhov expansions and allows us to use the statistical 
information inherent in the spatial correlation function of 
the field being expanded in order to construct the 
expansions of random fields within the confines of the local 
area. 

In contrast to numerical method described in Ref. 2 
this approach allows us to optimize the mode expansion 
over any given set of functions such as Zernike polynomials 
where aberrations of wave front are presented through tilts, 
defocusing, distortion, coma and others higher order 
aberrations or Uolsh functions3 which are basic ones for 
zonal step compensation.  

The proposed approach is not completely analytical. At 
different stages of constructing optimal expansion the 
numerical methods are used, and as a consequence the errors 
occur due to truncation of an infinite series of functions 
expansion. 

The problems of accuracy and results of numerical 
simulations at constructing optimal basis for representation 
of optical wave phase in a turbulent atmosphere with 
Kolmogorov–Obukhov power spectrum of refractive index 
are discussed in the paper. 

We dwell at first on the problem of the representation 
error of adaptive integral equation kernel (formula (8) in 
Ref. 1). In most interesting cases the phase structure 
function Ds(ρ) is the kernel of this equation. Let us use the 

expansion of phase structure function in terms of Bessel 
functions1

 
 

Ds(ρ) = ∑
p=0

P
 ap J0 ( )μp 

ρ
2R  ; (1) 

ap = 
2

R2 [J ′0 (μp)]
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ρ Ds(ρ) J0 ( )μp 

ρ
2R  dρ. (2) 

(All designations in this paper are the same as in Ref.
 
1.) For 

the Kolmogorov spectrum of atmospheric turbulence3 we can 
write 

Ds(ρ) = 6.88 ⎝⎛ ⎠⎞
ρ
r0

5/3

, (3) 

 
where r0 = 0.185 137 1 (C n

2 L / λ2)–3/5 is the Fried 

radius defined by the structure constant of refractive 
index C n

2, pathlength of wave propagation L, and 

wavelength λ. To calculate the expansion coefficients ap 

we use the standard Gaussian method. The error of 
calculation of integral (2) was not more then 10–8. 

The error of calculation of Δ with the use of 
approximation (1) was estimated by such a way 

 

Δ ≤ max
0 ≤ ρ ≤ 2R

 Ds(ρ) – ∑
p=0

P
 ap J0( )μp 

ρ
2R  . (4) 

 
For example, at Δ = 10–6 the number of terms P in 

expansion (1) is equal to 30. In accordance with Eq. 13 
in Ref. 1 the same number defines the dimension of 
Gramme square matrix. To diagonalize the matrices the 
Jacobi method was used. It allowed us to find the 
spectrum of eigenvalues Λk and calculate the coefficients 

of expansion K j
l (ρ) in terms of Bessel functions. 

According to the increase order of Λk the sequence of 

functions was chosen. This sequence of functions Ψk is a 

K–L–O adaptive modes (polynomials). 
The forms of Ψk for k = 2, ... , 13 are presented in 

Fig. 1. The radial parts of the first polynomials are 
plotted in Fig. 2 in comparison with those of Zernike 
polynomials. 

From Figs. 1 and 2 it follows that Zernike 
polynomials are close to adaptive polynomials only in the 
case of lower–order modes. If Zernike basis is taken as an 
expansion basis, the given accuracy can obviously be 
achieved even with several first terms of a new series. 

In the first part of the paper we have described the 
transformation of the function representation in a 
conventional Zernike basis into adaptive Zernike basis by 
use of the following formula:  

 

K lj (ρ) = ∑
n=1

N
 w lj n R

l
n(ρ). (5) 



 

    
 

FIG. 1. The K–L–O modes Ψk: for k = 2 (a), 8 (b), 4 (c), 13 (d), and 7 (e). 
 

     
 

FIG. 2. Radial parts of polynomials: Zernike polynomials (a) and K–L–O ones (b). 
 
Let us present the explicit form of the matrices of such a 

transformation w j
l n for five successive values of the azimuth 

index l and the index of radial disintegration j. The choice of 
the given quantity of indices (and consequently the choice of 
dimension of vector–lines) is quite sufficient to the mean–  

square error of random phase approximation <ε2> be not 
more then 10–6. Below the values of radial component of 
K–L–O functions and Zernike polynomials for different 
indexes j form matrix–columns and, in turn, matrix–lines 
w j

l form square matrices so that 

 
 



 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

K0
1

K0
2

K0
3

K0
4

K0
5

 = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

0.9754 0.2205 –0.0014 –0.0001 0.0000

–0.2203 0.9739 –0.0554 0.0043 0.0000

–0.0104 0.0518 0.9218 –0.3761 0.0777

–0.0030 0.0157 0.3451 0.7250 –0.5958

–0.0012 0.0067 0.1677 0.5770 0.7993

 × 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

R0
0

R0
2

R0
4

R0
6

R0
8

 ; (6) 

 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

K±1
1

K±1
2

K±1
3

K±1
4

K±1
5

 = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

0.9995 –0.0319 0.0018 0.0000 0.0000

0.0310 0.9540 –0.2945 0.0472 –0.0034

0.0072 0.2677 0.7790 –0.5428 0.1637

0.0029 0.1187 0.4794 0.5413 –0.6805

0.0013 0.0563 0.2768 0.6404 0.7142

 × 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

R±1
1

R±1
3

R±1
5

R±1
7

R±1
9

; (7) 

 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

K±2
1

K±2
2

K±2
3

K±2
4

K±2
5

 = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

0.9838 –0.1784 0.0192 –0.0007 0.0000

0.1675 0.8758 –0.4406 0.1030 –0.0125

0.0563 0.3794 0.6201 –0.6331 0.2535

–0.0256 –0.1908 –0.4715 –0.2655 0.6808

–0.0140 –0.1101 –0.3200 –0.4065 0.0827

 × 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

R±2
2

R±2
4

R±2
6

R±2
8

R±2
10

; (8) 

 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

K±3
1

K±3
2

K±3
3

K±3
4

K±3
5

 = 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

0.9599 –0.2770 0.0429 –0.0029 0.0002

0.2523 0.7898 –0.5348 0.1609 –0.0265

0.1028 0.4371 0.4741 –0.6743 0.3322

–0.05212 –0.2503 –0.4601 –0.1023 0.6468

–0.0308 –0.1583 –0.3361 –0.3328 0.2137

 × 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

R±3
3

R±3
5

R±3
7

R±3
9

R±3
11

; (9) 

 

Note, that the sum of the squares of elements in 
each line and each column are equal to one and the same 
value. This value should coincide with the norm of 
function K j

l (ρ). In our case the norm equals unity. 

Obviously, that closeness to unity may serve as a 
criterion of accuracy of calculation of the coefficients of 
K–L–O basis expansion in terms of Zernike polynomials. 

The analytical form of the five first K–L–O 
polynomials derived by calculation of matrix–lines w j

l for 

structure function (3) is presented by the formulas 
 

Ψ1,2(ρ, θ) = K 11(ρ) { }cos θ
sin θ  = 

= [2ρ 0.9995 – 0.03195 (3ρ3 – 2ρ) 8 ] { }cos θ
sin θ , 

 

Ψ3,4(ρ, θ) = K 21(ρ){ }cos 2θ
sin 2θ =  

=[0.9838ρ2 6– 0.1784(4ρ4– 3ρ2) 10 + 0.0192 14 (15ρ6– 

–  20ρ4+ 6ρ2)] { }cos 2θ
sin 2θ , 

 
Ψ5(ρ, θ) = K 01(ρ) =  

=[0.9754 2ρ–0.2205 (2ρ2–1) 3 + 0.0014 (6ρ4– 6ρ2+ 1) 5] . 

These polynomials were chosen from the elements K j
l(ρ) of the 

matrix–columns (6)–(9) after arrangement of the 
eigenvalues λ l

(j) in descending order. 

Thus, we have investigated in this paper the efficiency 
of a semi–analytical approach to the problem of 
constructing the basis of random phase representation in the 
systems of coherent adaptive optics optimal for atmospheric 
turbulence. We described the algorithms of numerical 
realization of this approach and estimated the errors caused 
by truncation of infinite series representing the K–L–O 
functions. We also presented some results of numerical 
simulations and analytical expressions of the fundamental 
K–L–O modes expanded in Zernike basis. The developed 
approach and algorithms can serve as a base for creation 
software for the wave–front correctors control based on 
principles of mode or zonal step correction. 
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