Vol. 39, issue 01, article # 10
Copy the reference to clipboard
Abstract:
Studies of the content of radioactive gases in the atmosphere are important for assessing their danger to public health and as an auxiliary characteristic of gas exchange between soil and atmosphere. There are very few measurements of radon and thoron concentrations in Russia. Therefore, this paper summarizes the results of their monitoring in the background region near Tomsk over 2020–2024. It has been shown that annual average radon concentrations are in the range 10.7–14.3 Bq/m3; the annual average maximal values can reach 81 Bq/m3. Thoron is characterized by a weaker variability of the average content (8.9–11.8 Bq/m3) and a lower maximal concentration (65 Bq/m3). It is found that radon has a well-defined daily cycle, while thoron does not. There are also significant differences in the annual variations in the concentrations of these gases. Although the main maxima of their concentrations are recorded in July, 222Rn has a secondary maximum in the cold season. A slow increase in the concentrations of both radon and thoron from 2020 to 2024 was found. The content of 222Rn increases at a rate of 0.5 Bq/m3 per year, and of 220Rn, with a rate of 0.2 Bq/m3 per year. The concentration of 222Rn is higher than 220Rn on daily, annual, and long-term scales. The data presented in this paper will be useful in choosing the range and uncertainty of new devices or protection against radiation and assessment of the probability of occurrence of a particular phenomenon.
Keywords:
atmosphere, air, gas, concentration, radon, composition, thoron
Figures:
References:
1. Nazadoff W.W. Radon transport from soil to air // Rev. Geophys. 1992. V. 30, N 2. P. 137–160. DOI: 10.1029/92RG00055.
2. Porstendorfer J. Properties and behavior of radon and thoron and their decay products in the air // J. Aerosol Sci. 1994. V. 25, N 2. P. 219–263.
3. Crawford J., Chambers S.D., Williams A.G. Assessing the impact of synoptic weather systems on air quality in Sidney using radon-222 // Atmos. Environ. 2023. V. 295. P. 119537. DOI: 10.1016/j.atmosenv.2022.119537.
4. Crawford J., Chambers S., Cohen D., Williams A., Griffiths A., Stelcer E. Assessing the impact of atmospheric stability on locally and remotely sourced aerosols at Richmond, Australia, using radon-222 // Atmos Environ. 2016. V. 127. P. 107–117. DOI: 10.1016/j.atmosenv.2015.12.034.
5. Curcoll R., Àgueda A., Morguí J.-A., Cañas L., Borràs S., Vargas A., Grossi C. Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM) // Atmos. Chem. Phys. 2025. V. 25, N 12. P. 6299–6323. DOI: 10.5194/egusphere-2024-1370.
6. Denisenko V.V., Rozanov E.V., Belyuchenko K.V., Bessarab F.S., Golubenko K.S., Klimenko M.V. Vozmushchenie ionosfernogo elektricheskogo polya pri povyshenii emanatsii radona // Khimicheskaya fizika. 2024. V. 43, N 6. P. 72–80.
7. Muhammad A., Külahci F., Birel S. Investigating radon and TEC anomalies relative to earthquakes via AI models // J. Atmos. Sol.-Terr. Phys. 2023. V. 245. P. 106037. DOI: 10.1016/j.jastp.2023.106037.
8. Anisimov S.V., Galichenko S.V., Afinogenov K.V., Makrushin A.P., Shikhova N.M. Ob"emnaya aktivnost' radona i ionoobrazovanie v nevozmushchennoi nijnei atmosfere: nazemnye nablyudeniya i chislennoe modelirovanie // Fizika Zemli. 2017. N 1. P. 155–170.
9. Zhang K., Feichter J., Kazil J., Wan H., Zhuo W., Griffiths A.D., Sartorius H., Zahorowski W., Ramonet M., Schmidt M., Yver C., Neubert R.E.M., Brunke E.-G. Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions // Atmos. Chem. Phys. 2011. V. 11, N 15. P. 7817–7838. DOI: 10.5194/acp-11-7817-2011.
10. Rizzo A., Antonacci G., Borra E., Cardellini F., Ciciani L., Sperandio L., Vilardi I. Environmental gamma dose rate monitoring and radon correlations: Evidence and potential applications // Environments. 2022. V. 9, N 5. P. 66. DOI: 10.3390/environments9060066.
11. Tchorz-Trzeciakiewicz D.E., Rysiukiewicz M. Ambient gamma dose rate as an indicator of geogenic radon potential // Sci. Total Environ. 2021. V. 755. P. 142771. DOI: 10.1016/j.scitotenv.2020.142771.
12. Yelizarov M., Yelizarov O., Berezovska I., Rataj M. Influence of the natural radon radiation on the spread of the COVID 19 pandemic // Sci. Rep. 2023. V. 13. P. 13–12752. DOI: 10.1038/s41598-023-39705-2.
13. Weller R., Levin I., Schmithüsen D., Nachbar M., Asseng J., Wagenbach D. On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica // Atmos. Chem. Phys. Discuss. 2014. V. 14, N 8. P. 3843–3853. DOI: 10.5194/acp-14-3843-2014
14. Liebenberg-Enslin H., von Oertzen D., Mwananawara N. Dust and radon levels on the west coast of Namibia – What did we learn? // Atmos. Pollut. Res. 2020. V. 11, N 6. P. 2100–2109. DOI: 10.17159/caj/2020/30/1.8467.
15. Abbady A.G.E., Din K.S., Saad N. 222Rn and its relation with meteorological conditions and gaseous pollutants in the outdoor environment of Qena City South of Egypt // Sci. Reports. 2023. V. 13. P. 13–18307. DOI: 10.1038/s41598-023-45497-2.
16. Khan S.M., Pearson D.D., Eldridge E.L., Morais T.A., Ahanonu M.I.C., Ryan M.C., Taron J.M., Goodarzi A.A. Rural communities experience higher radon exposure versus urban areas, potentially due to drilled groundwater well annuli acting as unintended radon gas migration conduits // Sci. Rep. 2024. V. 14. P. 14–3640. DOI: 10.1038/s41598-024-53458-6.
17. Tan W., Nie Y. Radon concentration in air and evaluation of the radiation dose in villages near Shizhuyuan, Southern Hunan, China // Atmosphere. 2024. V. 15, N 7. P. 786. DOI: 10.3390/atmos15070786.
18. Glover P.W.J., Blouin M. Increased radon exposure from thawing of permafrost due to climate change // Earth’s Future. 2022. V. 10, N 2. P. E2021EF002598. DOI: 10.1029/2021EF002598.
19. Gavriliev S., Petrova T., Miklyaev P. Factors influencing radon transport in the soils of Moscow // Environ. Sci. Pollut. Res. 2022. V. 29. P. 88606–88617. DOI: 10.21203/rs.3.rs-1100387/v1.
20. Miklyaev P.S., Petrova T.B., Marennyy A.M., Shchitov D.V., Sidyakin P.A., Murzabekov M.A., Lopatin M.N. High seasonal variations of the radon exhalation from soil surface in the fault zones (Baikal and North Caucasus regions) // J. Environ. Radioact. 2020. V. 219. P. 106271. DOI: 10.1016/j.jenvrad.2020.106271.
21. Berezina E.V., Elansky N.F., Moiseenko K.B., Belikov I.B., Shumsky R.A., Safronov A.N., Brenninkmeijer C.A.M. Estimation of nocturnal 222Rn soil fluxes over Russia from TROICA measurements // Atmos. Chem. Phys. 2013. V. 13, N 23. P. 11695–11708. DOI: 10.5194/acpd-13-14545-2013.
22. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Y.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs // Proc. SPIE. 2018. V. 10833. P. 108337Z. DOI: 10.1117/12.2504388.
23. Alferov A.M., Blinov V.G., Gitarskii M.L., Grabar V.A., Zamolodchikov D.G., Zinchenko A.V., Ivanova N.P., Ivakhov V.M., Karabanyu R.T., Karelin D.V., Kalyujnyi I.L., Kashin F.V., Konyushkov D.E., Korotkov V.N., Krovotyntsev V.A., Lavrov S.A., Marunich A.S., Paramonova N.N., Romanovskaya A.A., Trunov A.A., Shilkin A.V. Yuzbekov A.K. Monitoring potokov parnikovykh gazov v prirodnykh ekosistemakh. Saratov: Amirit, 2017. 279 p.
24. Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V. Emissiya i pogloshchenie parnikovykh gazov lugovoi ekosistemoi yujnoi taigi Zapadnoi Sibiri: otsenka vklada pochvennoi sostavlyayushchei po dannym nablyudenii 2023 year // Optika atmosf. i okeana. 2024. V. 37, N 9. P. 760–772. DOI: 10.15372/AOO20240906; Arshinov M.Yu., Belan B.D., Davydov D.K., Kozlov A.V., Fofonov A.V. Emission and sink of greenhouse gases in the grassland ecosystem of southern taiga of Western Siberia: Estimates of the contribution of soil flux component from observations of 2023 // Atmos. Ocean. Opt. 2024. V. 37, N 7. P. 850–865.
25. Matveev L.T. Kurs obshchei meteorologii. Fizika atmosfery. SPb.: Gidrometeoizdat, 2000. 777 p.
26. Chambers S.D., Williams A.G., Crawford J., Griffiths A.D. On the use of radon for quantifying the effects of atmospheric stability on urban emissions // Atmos. Chem. Phys. 2015. V. 15, N 3. P. 1175–1190. DOI: 10.5194/acpd-14-25411-2014.
27. Podstawczynska A. Differences of near-ground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity // Atmos. Environ. 2016. V. 126. P. 225–234. DOI: 10.1016/j.atmosenv.2015.11.037.
28. Chen X., Paatero J., Kerminen V.-M., Riuttanen L., Hatakka J., Hiltunen V., Paasonen P., Hirsikko A., Franchin A., Manninen H.E., Petäjä T., Viisanen Y., Kulmala M. Responses of the atmospheric concentration of radon-222 to the vertical mixing and spatial transportation // Boreal Environ. Res. 2016. V. 21, N 3, 4. P. 299–318.
29. Pal S., Lopez M., Schmidt M., Ramonet M., Gibert F., Xueref-Remy I., Ciais P. Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France // J. Geophys. Res.: Atmos. 2015. V. 120, N 2. P. 623–643. DOI: 10.1002/2014JD022322.
30. Kikaj D., Chambers S.D., Kobal M., Crawford J., Vaupotič J. Characterizing atmospheric controls on winter urban pollution in a topographic basin setting using radon-222 // Atmos. Res. 2020. V. 237. P. 104838. DOI: 10.1016/j.atmosres.2019.104838.
31. Gavriliev S., Petrova T., Miklyaev P., Nefedov N. Variations in soil radon levels during winter and spring periods // Radiation Protection Dosimetry. 2020. V. 191, N 2. P. 250–254. DOI: 10.1093/rpd/ncaa162.
32. Celikovic I., Pantelic G., Vukanac I., Nikolic J.K., Živanovic M., Cinelli G., Gruber V., Baumann S., Ciotoli G., Poncela L.S.Q., Rábago D. Overview of radon flux characteristics, measurements, models and its potential use for the estimation of radon priority areas // Atmosphere. 2022. V. 13, N 11. P. 2005. DOI: 10.3390/atmos13122005.
33. Chambers S., Williams A.G., Zahorowski W., Griffiths A., Crawford J. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere // Tellus. 2011. V. 63B, N 5. P. 843–859. DOI: 10.3402/tellusb.v63i5.16416.
34. Botha R., Labuschagne C., Williams A.G., Bosmane G., Brunke E.-G., Rossouw A., Lindsay R. Characterising fifteen years of continuous atmospheric radon activity observations at Cape Point (South Africa) // Atmos. Environ. 2018. V. 176. P. 30–39. DOI: 10.1016/j.atmosenv.2017.12.010.
35. Crova F., Valli G., Bernardoni V., Forello A.C., Valentini S., Vecchi R. Effectiveness of airborne radon progeny assessment for atmospheric studies // Atmos. Res. 2021. V. 250. P. 105390. DOI: 10.1016/j.atmosres.2020.105390.
36. Liu C., Chen J., Zhang W., Ungar K. Outdoor radon dose rate in Canada’s Arctic amid climate change // Environ. Sci. Technol. 2024. V. 58, N 26. P. 11309–11319. DOI: 10.1021/acs.est.4c02723.
37. Arshinov M.Yu., Belan B.D., Garmash O.V., Davydov D.K., Demakova A.A., Ezhova E.V., Kozlov A.V., Kulmala M., Lappalainen H., Petäjä T. Dinamika kontsentratsii atmosfernykh ionov po dannym izmerenii v observatorii «Fonovaya» // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 12–18. DOI: 10.15372/AOO20220102; Arshinov M.Yu., Belan B.D., Garmash O.V., Davydov D.K., Demakova A.A., Ezhova E.V., Kozlov A.V., Kulmala M., Lappalainen H., Petäjä T. Correlation between the concentrations of atmospheric ions and radon as judged from measurements at the Fonovaya Observatory // Atmos. Ocean. Opt. 2022. V. 35, N 1. P. 36–42.
38. Smirnov V.V. Ionizatsiya v troposfere. SPb.: Gidrometeoizdat, 1992. 312 p.
39. Shabek F., Kolarž P., Celikovic I., Curcic M., Janicijevic A. Interaction between radon, air ions, and ultrafine particles under contrasting atmospheric conditions in Belgrade, Serbia // Atmosphere. 2025. V. 16, N 7. P. 808. DOI: 10.3390/atmos16070808.
40. SanPiN 2.6.1.2523-09. Normy radiatsionnoi bezopasnosti. Postanovlenie Glavnogo Gosudarstvennogo sanitarnogo vracha RF N 47 ot 7 july 2009 year.