Vol. 34, issue 04, article # 6

Firsov K. M., Chesnokova T. Yu., Razmolov A. A. Influence of aerosol and clouds on characteristics of the underlying surface, measured by Sentinel-2A in lower Volga region. // Optika Atmosfery i Okeana. 2021. V. 34. No. 04. P. 285–291. DOI: 10.15372/AOO20210406 [in Russian].
Copy the reference to clipboard

Abstract:

A broadband model for simulation of the transfer of shortwave solar radiation in the Earth’s atmosphere for spectral channels of radiometers placed in Sentinel-2A satellites is developed. This model is based on line-by-line calculations of absorption spectra with use of modern spectroscopic information and following parameterization of the transmission functions of radiation in the form of short exponent series, which allows one to apply standard method of discrete ordinates to solution of the radiative transfer equation for each exponential component. The errors in the spectral brightness coefficients of the surface due to uncertainties of aerosol extinction in Sentinel-2A channels are estimated for typical optical-meteorological conditions of the lower Volga region.

Keywords:

atmospheric radiative transfer, spectral brightness, aerosol, cirrus clouds, satellite radiometer

References:

  1. Voronina P.V., Mamash E.A. Klassifikatsiya tematicheskih zadach monitoringa sel'skogo hozyajstva s ispol'zovaniem dannyh distantsionnogo zondirovaniya MODIS // Vychislitel'nye tekhnologii. 2014. V. 19, N 3. P. 76–102.
  2. Vermote E.F., Vermeulen A. Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm theoretical background document, version 4.0. 1999. [Electronic resource]. URL: http://modis.gsfc.nasa.gov/atbd/ atbd_nod08.pdf (last access: 26.01.2021).
  3. Timofeev Yu.M., Vasil'ev A.V. Teoreticheskie osnovy atmosfernoj optiki. SPb.: Nauka, 2003. 474 p.
  4. Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel' M.V. Vosstanovlenie koeffitsientov otrazheniya zemnoj poverhnosti po sputnikovym izmereniyam MODIS s uchetom polyarizatsii izlucheniya // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 641–649. DOI: 10.15372/AOO20190806; Tarasenkov M.V., Zimovaya A.V., Belov V.V., Engel M.V. Retrieval of reflection coefficients of the earth’s surface from modis satellite measurements considering radiation polarization // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 179–187.
  5. Li Y., Chen J., Ma Q., Zhang H.K., Liu J. Evaluation of Sentinel-2A surface reflectance derived using sen2Cor in North America // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018. V. 11, N 6. P. 1997–2021. DOI: 10.1109/JSTARS.2018.2835823.
  6. Tiwari S., Singh A.K. Variability of aerosol parameters derived from ground and satellite measurements over Varanasi located in the Indo-Gangetic basin // Aerosol Air Qual. Res. 2013. V. 13. P. 627–638. DOI: 10.4209/aaqr.2012.06.0162.
  7. Plahin I.N., Pankratova N.V., Malahotkina E.L. Sravnenie dannyh nazemnogo i sputnikovogo monitoringa aerozol'noj opticheskoj tolshchi atmosfery dlya territorii Rossii // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2018. V. 15, N 2. P. 225–234.
  8. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tana Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. DOI: 10.1016/j.jqsrt.2017.06.038.
  9. Stamnes K., Tsay S.C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl. Opt. 1988. V. 27, N 12. P. 2502–2509.
  10. Wiscombe, "DISORT," URL: ftp://climate.gsfc.nasa. gov/pub/wiscombe/Multiple_Scatt/ (last access: 26.01.2021).
  11. URL: http://kurucz.harvard.edu/sun/irradiance2008 (last access: 26.01.2021).
  12. Firsov K.M., Chesnokova T.Y., Kozodoeva E.M., Fazliev A.Z. Raspredelennaya informatsionno-vychislitel'naya sistema «Atmosfernaya radiatsiya» // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 364–370; Firsov K.M., Chesnokova T.Y., Kozodoeva E.M., Fazliev A.Z. Atmospheric radiation distributed information-computational system // Atmos. Ocean. Opt. 2010. V. 23, N 5. P. 411–417.
  13. Firsov K.M., Razmolov A.A., Klitochenko I.I. Radiatsionnaya model' dlya spektral'nyh kanalov radiometrov, ustanovlennyh na sputnikah Sentinel-2A i Landsat 8. Sb. tr. V Mezhdunarodnoj konf. i molodezhnoj shkoly «Informatsionnye tekhnologii i nanotekhnologii» (ITNT-2019) Samara, 21–24 may 2019 year, P. 413–419.
  14. Emde C., Buras-Schnell R., Kylling A., Mayer B., Gasteiger J., Hamann U., Kylling J., Richter B., Pause C., Dowling T., Bugliar L. The libRadtran software package for radiative transfer calculations (version 2.0.1) // Geosci. Model Dev. 2016. V. 9. P. 1647–1672. DOI: 10.5194/gmd-9-1647-2016.
  15. Buehler S.A., John V.O., Kottayi A., Milz M., Eriksson P. Efficient radiative transfer simulations for a broadband infrared radiometer – comining a weighted mean of representative frequencies approach with frequency selection by simulated annealing // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 602–615.
  16. Afonin S.V., Bykov A.D., Gridnev Yu.V., Zuev V.V., Kataev M.Yu.,Komarov V.S., Mitsel' A.A., Naumenko O.V., Firsov K.M, Chesnokova T.Yu., Chursin A.A. Zondirovanie atmosfery s pomoshch'yu sputnikovogo radiometra HIRS/2 // Optika atmosf. i okeana. 1998. V. 11, N 10. P. 1069–1078.
  17. URL: www.noaa.gov (last access: 26.01.2021).
  18. Anderson G.P., Clough S.A., Kneizys F.X., Chetwynd J.H., Shettle E.P. AFGL atmospheric constituent profiles (0–120 km) // AFGL-TR-86-0110. Environ. Res. Paper. N 95. 43 p.
  19. Firsov K.M., Bobrov E.V. Vosstanovlenie opticheskoj tolshchi aerozolya iz nazemnyh izmerenij solnechnym fotometrom SPM // Vestn. VolGU. Iss. 1. Mat. Fiz. 2014. N 2(21). P. 57–64.
  20. Issledovanie radiatsionnyh harakteristik aerozolya v aziatskoj chasti Russia // pod obshchej red S.M. Sakerina. Tomsk: Izd-vo IOA SO RAN, 2012. 484 p.
  21. Sakerin S.M., Kabanov D.M., Smirnov A.V., Holben B.N. Aerosol optical depth of the atmosphere over ocean in the wavelength range 0.37–4 mm // Int. J. Remote Sens. 2008.V. 29, iss. 9. Р. 2519–2547. DOI: 10.1080/01431160701767492.
  22. Fu Q., Yang P., Sun W. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models // J. Climate. 1998. V. 11. P. 2223–2237.