Vol. 30, issue 07, article # 1

Konoshonkin A. V. Optical characteristics of irregular atmospheric ice columns. // Optika Atmosfery i Okeana. 2017. V. 30. No. 07. P. 543–551. DOI: 10.15372/AOO20170701 [in Russian].
Copy the reference to clipboard

Abstract:

The study of cirrus clouds, which significantly affect the climate, is carried out using lidars. Interpretation of the lidar data is based on the direct solution of the problem of light scattering by particles of crystal clouds. Optical characteristics of perfect ice hexagonal columns, obtained previously, poorly agree with the lidar observation results. The work describes calculations of the optical characteristics of irregular hexagonal ice columns, which are in a good agreement with the experimental results. The calculations for particles with deformation of a dihedral angle of 90° are presented. It is shown that the logarithm of the scattering matrix can be well linearly approximated by the logarithm of the particle size. This can significantly speed up the calculations of the optical characteristics of clouds. It is ascertained that the optical characteristics are in a good agreement with the lidar observation results throughout the entire range of sizes calculated even at deformation angles of a few degrees.

Keywords:

irregular ice columns, cirrus clouds, physical optics, light scattering, ice crystals

References:

  1. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Weather Rev. 1986. V. 114, N 6. P. 1167–1199.
  2. Stephens G.L., Tsay S.-C., Stackhouse P.W., Jr., Flatau P.J. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback // J. Atmos. Sci. 1990. V. 47, N 14. P. 1742–1754.
  3. Baran A.J. From the single-scattering properties of ice crystals to climate prediction: A way forward // Atmos. Res. 2012. V. 112. P. 45–69.
  4. Wendling P., Wendling R., Weickmann H.K. Scattering of solar radiation by hexagonal ice crystals // Appl. Opt. 1979. V. 18, N 15. P. 2663–2671.
  5. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
  6. Kuz'min V.A., Dikinis A.V. Kompleksnoe ispol'zovanie dannyh distancionnogo zondirovanija, nazemnyh nabljudenij i chislennyh prognozov pogody pri avtomatizirovannom prognozirovanii stoka // Uchen. zap. Ros. gos. gidrometeorol. un-ta. 2011. V. 22, N 22. P. 16–27.
  7. Coldatenko S.A., Tertyshnikov A.V., Shirshov N.V. Ocenka vlijanija sputnikovoj informacii na kachestvo chislennyh prognozov pogody // Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. 2015. V. 12, N 4. P. 38–47.
  8. Kalnay E. Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 2002. 364 p.
  9. Baran A.J. A review of the light scattering properties of cirrus // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 14–16. P. 1239–1260.
  10. Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
  11. Borovoi A., Konoshonkin A., Kustova N. Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds // Opt. Lett. 2014. V. 39, N 19. P. 5788–5791.
  12. Samokhvalov I.V., Bryukhanov I.D., Nasonov S.V., Zhivotenyuk I.V., Stykon A.P. Investigation of the optical characteristics of cirrus clouds with anomalous backscatterring // Rus. Phys. J. 2013. V. 55, N 8. P. 925–929.
  13. Sassen K., Kayetha V. K., Zhu J. Ice cloud depolarization for nadir and off-nadir CALIPSO measurements // Geophys. Res. Lett. 2012. V. 39, N 20. P. L20805. DOI: 10.1029/2012GL053116.
  14. Samohvalov I.V., Bobrovnikov S.M., Gejko P.P., El'nikov A.V., Kaul' B.V. Razvitie vysotnogo lidara Tomskogo gosudarstvennogo universiteta kak unikal'nogo kompleksa dlja monitoringa atmosfery // Optika atmosf. i okeana. 2006. V. 19, N 11. P. 995–999.
  15. Kaul' B.V. Optiko-lokacionnyj metod poljarizacionnyh issledovanij anizotropnyh ajerozol'nyh sred: Dis. … d-ra fiz.-mat. nauk. Tomsk, 2004. 219 p.
  16. Kaul' B.V., Volkov S.N., Samohvalov I.V. Rezul'taty issledovanij kristallicheskih oblakov posredstvom lidarnyh izmerenij matric obratnogo rassejanija sveta // Optika atmosf. i okeana. 2003. V. 16, N 4. P. 354–361.
  17. Romashov D.N., Kaul' B.V., Samohvalov I.V. Bank dannyh dlja interpretacii rezul'tatov poljarizacionnogo zondirovanija kristallicheskih oblakov // Optika atmosf. i okeana. 2000. V. 13, N 9. P. 854–861.
  18. Samohvalov I.V., Nasonov S.V., Brjuhanov I.D., Borovoj A.G., Kaul' B.V., Kustova N.V., Konoshonkin A.V. Analiz matricy obratnogo rassejanija peristyh oblakov s anomal'nym obratnym rassejaniem // Izv. vuzov. Fizika. 2013. V. 56, N 8/3. P. 281–283.
  19. Konoshonkin A.V., Kustova N.V., Osipov V.A., Borovoj A.G., Masuda K., Ishimoto H., Okamoto H. Metod fizicheskoj optiki dlja reshenija zadachi rassejanija sveta na kristallicheskih ledjanyh chasticah: sravnenie difrakcionnyh formul // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 830–843.
  20. Borovoi A., Konoshonkin A., Kustova N. The physics-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146 . P. 181–189.
  21. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Algoritm trassirovki puchkov dlja zadachi rassejanija sveta na atmosfernyh ledjanyh kristallah. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 324–330; Kоnоshоnkin А.V., Kustоvа N.V., BоrоvоА.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
  22. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Algoritm trassirovki puchkov dlja zadachi rassejanija sveta na atmosfernyh ledjanyh kristallah. Part 2. Sravnenie s algoritmom trassirovki luchej // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 331–337; Kоnоshоnkin А.V., Kustоvа N.V., BоrоvоА.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 448–454.
  23. Konoshonkin A., Kustova N., Borovoi A. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 175–183.
  24. Borovoi A., Balin Y., Kokhanenko G., Penner I., Konoshonkin A., Kustova N. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar // Opt. Express. 2014. V. 22, N 20. P. 24566–24573.
  25. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20, N 27. P. 28222–28233.
  26. Konoshonkin A.V. Modelirovanie signala skanirujushhego lidara ot monodispersnogo oblaka kvazigorizontal'no orientirovannyh chastic // Optika atmosf. i okeana. 2016. V. 29, N 12. P. 1053–1060.
  27. Borovoi A., Kustova N., Konoshonkin A. Interference phenomena at backscattering by ice crystals of cirrus clouds // Opt. Express. 2015. V. 23, N 19. P. 24557–24571.
  28. Cho H.M., Yang P., Kattawar G.W., Nasiri S.L., Hu Y., Minnis P., Trepte C., Winker D. Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements // Opt. Express. 2014. V. 16, N 6. P. 3931–3948.
  29. Yoshida R., Okamoto H., Hagihara Y., Ishimoto H. Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio // J. Geophys. Res. 2010. V. 115. P. D00H32. DOI: 10.1029/2009JD012334.
  30. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology // J. Atmos. Sci. 1994. V. 51, N 6. P. 817–832.
  31. Wolf V., Reichardt J., Görsdorf U., Reigert A., Leinweber R., Lehmann V. Synergy between ground-based remote sensing systems in microphysical analysis of cirrus clouds // Proc. SPIE. 2014. V. 9246. P. 92460K. DOI: 10.1117/12.2065674.
  32. Volkovickij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskih oblakov. L.: Gidrometeoizdat, 1984. 197 p.
  33. Panoramno-opticheskaja stancija «TomSky». URL: http://sky.iao.ru/
  34. Morozov A.M., Galilejskij V.P., Elizarov A.I., Kokarev D.V. Nabljudenie zerkal'nogo otrazhenija osveshhennoj podstilajushhej poverhnosti oblachnym sloem iz ledjanyh plastinok // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 88–92.
  35. Konoshonkin A.V., Kustova N.V., Borovoi A.G., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 182. P. 12–23.
  36. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Okamoto H., Ishimoto H., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2017. DOI: 10.1016/j.jqsrt.2016.12.024.
  37. Mardia K. Statisticheskij analiz uglovyh nabljudenij / Per. s angl. Je.V. Hmaladze. M.: Nauka, 1978. 240 p.
  38. Mitchell D.L. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics // J. Atmos. Sci. 1994. V. 51, N 6. P. 797– 816.
  39. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27, N 6. P. 919–926.
  40. Sato K., Okamoto H. Characterization of Ze and LDR of non-spherical and inhomogeneous ice particles for 95-GHz cloud radar: Its application to microphysical retrievals // J. Geophys. Res. D. 2006. V. 111. P. 22213.
  41. Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoj A.G. Metodika reshenija zadachi rassejanija sveta na ledjanyh kristallah peristyh oblakov v napravlenii rassejanija nazad metodom fizicheskoj optiki dlja lidara s zenitnym skanirovaniem // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 40–50; Kоnоshоnkin А.V., Kustоvа N.V., Shishko V.A., BоrоvоА.G. The technique for salving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 252–262.
  42. Borovoi A., Konoshonkin A., Kustova N. Backscattering reciprocity for large particles // Opt. Lett. 2013. V. 38, N 9. P. 1485–1487.
  43. Wang Z., Borovoi A., Liu D., Tao Z., Ji C., Xie C., Wang B., Zhong Z., Wang Y. Properties of cirrus cloud by a three wavelength Raman Mie Polarization lidar: Observation and model match // Proc. SPIE. 2016. V. 10035. P. 100352V.