Vol. 29, issue 05, article # 7
Copy the reference to clipboard
Abstract:
We have proposed a method for solving the inverse problem of multifrequency lidar sensing of the atmospheric aerosol, which enables to retrieve the spatial distribution of volume concentrations of aerosol components, aerosol particle size distribution integrated along the sensing path, and the complex refractive index of the particles, without any additional data for calibration of the lidar and for supplementary definition of the inverse problem. The method is based on the assumption that the average sizes, the variance of sizes and the complex refractive index of the particles of each aerosol components do not change along the sensing path, and the number of lidar spectral channels is greater than the number of aerosol components. In this case the system of equations for the spectral-temporal readings of lidar signal becomes overdetermined, and its numerical solution allows determining not only the microphysical parameters of aerosol but also lidar calibration constants at operating wavelengths. Examples of processing of elastic and Raman scattering lidar signals of model aerodispersive medium at wavelengths λ0 = 0.355, 0.532, 1.064 μm and λR = 0.387, 0.607 μm, respectively, were presented.
It is shown that microphysical parameters of fine components (with particles size less than 1–2 μm) are retrieved from the signals with an error less than 10%. The error of microphysical parameters of coarse particles retrieval is strongly dependent on the significance of their contribution to the total transmission of the medium. The difference between aerosol extinction and backscatter coefficients calculated on the base of retrieved microphysical aerosol parameters and their actual values are within a few percents.
Keywords:
aerosol, optical parameters, microphysical parameters, multifrequency sensing, inverse problem, calibration-free method
References:
- Loginov V.F. Global'nye i regional'nye izmenenija klimata: Prichiny i sledstvija. Minsk: TetraSistems, 2008. 496 p.
- Kondrat'ev K.Ja., Ivlev L.S., Krapivin V.F. Svojstva, processy obrazovanija i posledstvija vozdejstvij atmosfernogo ajerozolja: ot nano- do global'nyh masshtabov. SPb.: VVM, 2007. 807 p.
- Ginzburg A.S., Gubanova D.P., Minashkin V.M. Vlijanie estestvennyh i antropogennyh ajerozolej na global'nyj i regional'nyj klimat // Ros. him. zh. (Zh. Ros. him. ob-va im. D.I. Mendeleeva). 2008. V. LII, N 5. P. 112–119.
- Chajkovskij A.P., Ivanov A.P., Balin Ju.S., El'nikov A.V., Tulinov G.F., Pljusnin I.I., Bukin O.A., Chen B.B. Lidarnaja set' CIS-LiNet dlja monitoringa ajerozolja i ozona: metodologija i apparatura // Optika atmosf. i okeana. 2005. V. 18, N 12. P. 1066–1072.
- Pappalardo G., Amodeo A., Apituley A., Comeron A., Freudenthaler V., Linné H., Ansmann A., Bösenberg J., D’Amico G., Mattis I., Mona L., Wandinger U., Amiridis V., Alados-Arboledas L., Nicolae D., Wiegner M. EARLINET: Towards an advanced sustainable European aerosol lidar network // Atmos. Meas. Technol. 2014. V. 7, N 8. P. 2389–2409.
- Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – A federate instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1988. V. 66, N 1. P. 1–16.
- Zuev V.E., Naac I.Je. Obratnye zadachi lazernogo zondirovanija atmosfery. Novosibirsk: Nauka, 1982. 240 p.
- Krekov G.M., Kavkjanov S.I., Krekova M.M. Interpretacija signalov opticheskogo zondirovanija atmosfery. Novosibirsk: Nauka, 1987. 184 p.
- Kovalev V.A., Eichinger W.E. Elastic Lidar: Theory, Practice, and Analysis Methods. Hoboken, New Jersey: John Wiley & Sons, 2004. 615 p.
- Ershov A.D., Balin Ju.S., Samojlova S.V. Obrashhenie lidarnyh dannyh pri issledovanii opticheskih harakteristik slabozamutnennoj atmosfery // Optika atmosf. i okeana. 2002. V. 15, N 10. P. 894–899.
- Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lidarnogo zondirovanija. Part 1. Metody vosstanovlenija opticheskih parametrov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 344–357; Samoilova S.V., Balin Yu.S., Kokhanenko G.P., Penner I.E. Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency raman lidar sensing. Part 1. Methods of Optical parameter retrieval // Atmos. Ocean. Opt. 2009. V. 22, N 3. P. 302–315.
- Lysenko S.A., Kugejko M.M. Metodika opredelenija koncentracii respirabel'noj frakcii atmosfernogo ajerozolja po dannym trehchastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2010. V. 23, N 2. P. 149–155; Lysenko S.A., Kugeiko M.M. Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing // Atmos. Ocean. Opt. 2010. V. 23, N 3. P. 222–228.
- Lysenko S.A., Kugejko M.M. Vosstanovlenie opticheskih i mikrofizicheskih harakteristik postvulkanicheskogo stratosfernogo ajerozolja iz rezul'tatov trehchastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 308–318; Lysenko S.A., Kugeiko M.M. Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 466–477.
- Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., De To-masi F., Frioud M., Grigorov I.V., Hågård A., Hor-vat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadenbosch F., António Rodrigues J., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
- Lysenko S.A., Kugejko M.M., Homich V.V. Metod opredelenija koncentracij ajerozol'nyh frakcij v prizemnom vozduhe po dannym mnogochastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 199–209; Lysenko S.A., Kugeiko M.M., Khomich V.V. Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 455–465.
- Lysenko S.A., Kugejko M.M., Homich V.V. Mnogochastotnoe lidarnoe zondirovanie zagrjaznennosti atmosfery tverdymi chasticami s razdeleniem na respirabel'nye frakcii // Optika atmosf. i okeana. 2016. Т. 29, № 1. С. 70–79.
- Müller D., Böckmann C., Kolgotin A., Schneidenbach L., Chemyakin E., Rosemann J., Znak P., Romanov A. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET // Atmos. Meas. Technol. Discuss. 2014. V. 8, N 12. P. 12823–12885.
- Chaikovsky A., Ivanov A., Balin Yu., Elnikov A., Tu-linov G., Plusnin J., Bukin O., Chen B. Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions // Proc. SPIE. 2006. V. 6160. P. 616035 (9 p.).
- Raut J.-C., Chazette P. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment // Atmos. Chem. Phys. 2007. V. 7, N 11. P. 2797–2815.
- Chaikovsky A., Dubovik O., Holben B., Bril A., Goloub P., Tanré D., Pappalardo G., Wandinger U., Chaikovskaya L., Denisov S., Grudo Y., Lopatin A., Karol Y., Lapyonok T., Amiridis V., Ansmann A., Apituley A., Allados-Arboledas L., Binietoglou I., Boselli A., D’Amico G., Freudenthaler V., Giles D., Granados-Muñoz M.J., Kokkalis P., Nicolae D., Oshchepkov S., Papayannis A., Perrone M.R., Pietruczuk A., Rocadenbosch F., Sicard M., Slutsker I., Talianu C., De Tomasi F., Tsekeri A., Wagner J., Wang X. Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET // Atmos. Meas. Technol. Discuss. 2015. V. 8, N 12. P. 12759–12822.
- Binietoglou I., Basart S., Alados-Arboledas L., Amiridis V., Argyrouli A., Baars H., Baldasano J.M., Balis D., Belegante L., Bravo-Aranda J.A., Burlizzi P., Carrasco V., Chaikovsky A., Comerón A., D’Amico G., Filioglou M., Granados-Muñoz M.J., Guerrero-Rascado J.L., Ilic L., Kokkalis P., Maurizi A., Mona L., Monti F., Muñoz-Porcar C., Nicolae D., Papayannis A., Pappalardo G., Pejanovic G., Pereira S.N., Perrone M.R., Pietruczuk A., Posyniak M., Rocadenbosch F., Rodríguez-Gómez A., Sicard M., Siomos N., Szkop A., Terradellas E., Tsekeri A., Vukovic A., Wandinger U., Wagner J. A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals // Atmos. Meas. Technol. 2015. V. 8, N 9. P. 3577–3600.
- Ansmann A., Wandinger U., Riebesell M., Weitkamp C., Michaelis W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar // Appl. Opt. 1992. V. 31, N 33. P. 7113–7131.
- Kneizys F.X., Abreu L.W., Anderson G.P., Chetwynd J.H., Shettle E.P., Berk A., Bernstein L.S., Robertson D.C., Acharya P., Rothman L.S., Selby J.E.A., Gallery W.O., Clough S.A. The MODTRAN 2/3 report and LOWTRAN 7 model. North Andover: Ontar Corporation, 1996. 261 p.
- Bohren G.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons, 1983. 544 p.
- Omar A.H., Winker D., Won J. Aerosol models for the CALIPSO lidar inversion algorithms // Proc. SPIE. 2003. V. 5240. P. 153–164.
- Jun L., Daren L. Nonlinear retrieval of atmospheric ozone profile from solar backscatter ultraviolet measurements: Theory and simulation // Adv. Atmos. Sci. 1997. V. 14, N 4. P. 473–480.
- Goddard Space Flight Center, AERONET. URL: http://aeronet.gsfc.nasa.gov
- World Meteorological Organization. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. Switzerland, Geneva. Report WCP-112, WMO/TD-24. 1986. 60 p.
- Perrone M.R., Burlizzi P., De Tomasi F., Chaikovsky A. Profiling of fine- and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code) // Atmos. Meas. Technol. Discuss. 2014. V. 7, N 8. P. 8881–8926.
- Jung J., Lee H., Kim Y.J., Liu X., Zhang Y., Hu M., Sugimoto N. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006) // J. Geophys. Res. D. 2009. V. 114, N 2. D00G02 (18 p.).
- Lopatin A., Dubovik O., Chaikovsky A., Goloub P., Lapyonok T., Tanre D., Litvinov P. Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: the GARRLiC algorithm // Atmos. Meas. Technol. 2013. V. 6, N 8. P. 2065–2088.
- Binietoglou I., Chaikovsky A., D’Amico G., Papagiannopoulos N., Pappalardo G. A methodology for the retrieval of aerosol volume concentration profiles through the synergy of lidar and photometer // ACCENT-Plus Symposium, Urbino, 17–20 September 2013. URL: http: // www.accent-network.org / accent_documents / ext_ abs_2013/binietoglou.pdf.
- Fenner W.R., Hyatt H.A., Kellam J.M., Porto S.P.S. Raman cross-section of some simple gases // J. Opt. Soc. Amer. 1973. V. 63, N 1. P. 73–77.
- Lysenko S.A., Kugejko M.M. Opredelenie koncentracii ajerozol'nyh chastic v vertikal'nom stolbe atmosfery po sputnikovym izmerenijam spektral'noj opticheskoj tolshhiny // Zh. prikl. spektroskopii. 2011. Т. 78, № 5. С. 793–800.
- Lysenko S.A., Kugejko M.M. Vosstanovlenie massovoj koncentracii pyli v promyshlennyh vybrosah iz rezul'tatov opticheskogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 960–968; Lysenko S.A., Kugeiko M.M. Retrieval of the mass concentration of dust in industrial emissions from optical sensing data // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 35–43.
- Mishchenko M.I., Cairns B., Hansen J.E., Travis L.D., Burg R., Kaufman Y.J., Martins J.V., Shettle E.P. Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 88, N 1–3. P. 149–161.