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An algorithm for automatic image classification based on a bilateral criterion for 
homogeneity of multidimensional samples with the use of the Kolmogorov–Smirnov 
distance has been proposed to solve problems of thematic interpretation of aerospace 
video data obtained from observations of the Earth's underlying surface and 
cloudiness. Applicability to a set of adjusted images in multispectral channels of 
visible, IR, and microwave ranges of electromagnetic spectrum is a salient feature of 
the constructed algorithm. 

 

Aerospace images of the Earth's underlying surface and 
cloudiness obtained by simultaneous recording of data in 
multispectral channels of visible, IR, and microwave ranges 
of electromagnetic radiation are the main source of routine 
information when solving the problems of exploration of 
natural resources and climatic–ecological monitoring. 
Subsequent processing of multidimensional observations 
contains a stage of thematic interpretation consisting in 
recognition of texture–homogeneous zones of images by a 
segmentation algorithm. To construct a segmentation 
procedure, it is natural to use the algorithms for automatic 
classification. In so doing, we must, first, to formulate the 
texture parameters of image fragments; second, to introduce 
a measure of adequacy of the textures being analyzed.1,4  

A peculiarity of the algorithm for automatic 
classification considered further consists in analysis of a set 
of multidimensional images adjusted in scales. In spite of 
the ease of recognition of the fragments of image with the 
texture of the same type by an interpreter, up to now there 
has been no universal formal definition of the texture. The 
known special definitions reflect only heuristic approaches 
to the formation of the texture–parameter space and 
methods of its automatic classification.2,3 The texture is 
manifested as a spatial image characteristic, and the 
corresponding functional of the probability density (for 
continuous observation) is exhaustive statistic description of 
the texture. It is impossible to assign this functional 
a priori. Therefore, the use of more simple models to 
describe the statistical properties of digitized radio–
brightness fields, for example, with the help of brightness 
distribution histograms, matrices of interelement 
connectivity, and regression and autocorrelation functions is 
justified.2,3,4  

First a problem of contouring of images is considered 
to eliminate these fragments of images as interfering at the 
stage of the texture analysis. The images under analysis are 
assumed to be digitized, adjusted in scales, and normalized 
on brightness, so that the digital representation has the 
form of a three–dimensional spatial matrix of the numbers 

{z 
ijk} of order M×N×K, where z 

ijk is the digitized 
brightness magnitude for a point (pixel) with the 
coordinates (i, j) of the plane of observed image of format 
M×N, and k is the serial number of spectral channel in the 
set of images of visible, IR, and microwave ranges, 

k = 1, ..., K. A set of the elements {z 
ij} of any image from 

the set 1, ..., K with the coordinates (i, j) belonging to a 

square of (2 l + 1)×(2 l + 1) pixels will be referred to as the 
image fragment with the central element (i = 0, j = 0) and 
the local coordinate system i = – l, ..., –1, 0, +1, ..., + l; 
j = – l, ..., –1, 0, +1, ..., + l introduced on it, where l is 
the window size parameter. Correspondingly, the fragment 
on the square of window (2 l + 1)×(2 l + 1) of 
multicomponent image is a set of the elements {z 

ijk}, 
(i, j, k) ∈ (2 l + 1)×(2 l + 1)×K. 

To describe the brightness {z 
ij} within the fragment 

(2 l + 1)×(2 l + 1), a simple model introduced in Ref. 5 is 
used. In this case the image local characteristics are 
described in terms of the density sections or facets. 

Formally, the vicinity of the point (x, y) is described 
by the following equation of plane for the continuous 
coordinates x, y, z of the tree–dimensional space 

 
z = α x + β y + μ, (1) 
 
where z is the net brightness for the facet model; α, β, and 
μ are the parameters of the plane. With i and j denoting the 
discrete values of the coordinates x and y in Eq. (1), 
respectively, we adjust model (1) to actual observations zij 
of the image fragment (2 l + 1)×(2 l + 1) best of all in the 
sense of the least–squares technique, namely 
 

I(α, β, μ) = ∑
j=– l

+l

    ∑
i=– l

+l

  [α i + β j + μ – z j i]2 = min
{α, β, μ}

. 

 

The estimated unknown parameters minimizing 
I(α, β, μ) have the following form: 

 

α
∧

 = 3 ∑
i=– l

+l

  i ∑
j=– l

+l

 z i j / l(l + 1) (2 l + 1)2, 

 

β
∧

 = 3 ∑
j=– l

+l

  j ∑
i=– l

+l

 z i j / l(l + 1) (2 l + 1)2, (2) 

 

μ
∧

 = ∑
j=– l

+l

   ∑
i=– l

+l

 z i j / (2 l + 1)2. 

 
Description of an image fragment with the help of 

facet model (1) is used to solve a problem of distinguishing 
the segments of image gradients. A value of the image 
gradient within the fragment is estimated by the spatial 
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derivative determined as a ratio of the area dS of inclined 
plane (1) bounded by the square fragment 
(2 l + 1)×(2 l + 1) to the area of the base dΔ of this 
fragment. If Eq. (1) is represented in the form of the 
equation of plane in terms of the direction cosines, then 

 

dS
dΔ≅ ⎝

⎜
⎛

⎠
⎟
⎞3 ∑

i=– l

+l

 i ∑
j=– l

+l

 z ji

l(l + 1)(2l + 1)2

2

 +⎝
⎜
⎛

⎠
⎟
⎞3 ∑

j=– l

+l

 j ∑
i=– l

+l

 z ji

l(l + 1)(2l + 1)2

2

 + 1

1/2

.  (3) 

 
Estimated value of the gradient is attributed to the 

central point of fragment with the local pixel coordinates 
i = 0, j = 0. If now every image under analysis is 
differentiated in the same way and the values of the 
corresponding gradients are attributed to the central 
elements of scanning window with the parameter l, then we 
can transfer from initial images of the radio–brightness 

relief {zijk} of aerospace photographs to the images with the 
underlined gradient having the values {wijk} determined 
from formula (3). 

Now a histogram of gradient distribution for a 
gradient image is constructed and two regions are selected 
on this histogram: the left no gradient region starting from 
zero and the right region of gradients. 

Formalized statement of this problem leads to a task of 
decomposition of the joint gradient distribution p(w), 
specified by the above–mentioned histogram, into two 
component distributions1,4: 
 

p(w) = P f(w) + Q g(w), (4) 
 

where g(w) is the function of conditional probability 
density for the hypothesis H

1
 that the observation w falls in 

the gradient class; f(w) is the density function for the 
alternative H

0
 that the observation w falls in the not 

gradient class; P and Q are the parameters of mixture; 
P + Q = 1. 

As parametric models of distributions comprising 
mixture (4), the Jonson SB–distribution6 is used having 

great approximating abilities in combination with few 
parameters among which are the form factors 

 

g(w), f(w) = 
λ

2π (w – ε) (λ – w + ε)
 × 

 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

– 
1
2 ⎣
⎡

⎦
⎤γ + η ln( )w – ε

λ – w + ε

2

, (5) 

 

where ε ≤ w ≤ ε + λ, η > 0, λ > 0, –∞ < γ < ∞. 
We solve the decomposition problem for distributions 

(4) with regard to models (5) numerically, choosing as a 
criterion for optimum a minimum of the following square 
criterion: 
 

[ p
∧

(w) – Pf(w) – Qg(w) ]2 = min
{q}

, (6) 

where
 

p
∧

(w) is the image gradient histogram; 
θ = {ε

0
, λ

0
, γ

0
, η

0
; ε

1
, λ

1
, γ

1
, η

1
; P}T is the set of unknown 

parameters; superscript T denotes transposition; ε
0
, λ

0
, γ

0
, 

and η
0
 are the parameters of the distribution f(w) given by 

Eq. (5) for the alternative H
0
; ε

1
, λ

1
, γ

1
, and η

1
 are the 

parameters of the distribution g(w) given by Eq. (5) for the 
hypothesis H

1
; P is the weight of the distribution f(w) in 

Eq. (4); and, Q = 1 – P. The problem of minimization of 

multiextremum functional (6) with respect to the set of 
eight parameters can be solved numerically by standard 
methods of random search for the gradient descent points 
with subsequent gradient descent. 

After estimating the parameters of the distributions 
f(w) and g(w), the decision rule in testing the hypotheses 
that contour (gradient) exists or not is written in the form 
of the Bayes decision rule 

 

u(w 
i
 
j) = arg max {p

∧

 f
∧

(w 
i
 
j), Q

∧

 g
∧

(w 
i
 
j)}, (7) 

 

where u(w 
i
 
j) is the solution; w 

i
 
j is the magnitude of the 

gradient image under analysis at the point (i, j). When we 
deal with a set of gradient images, the generalized gradient 

is determined by the vector 
dS
dΔ

 = 
⎝
⎛

⎠
⎞dS

1

dΔ
1
 ,..., 

dSK

dΔK

T

. 

The components of this vector are the magnitudes of 
individual gradient images. 

To solve the problem of retrieving the 
multidimensional probabilistic distributions of the 

components of the vector 
dS
dΔ

 for model (4), it is natural to 

use the multidimensional analog of the Jonson SB–

distribution6 that will substantially complicate a problem of 
evaluation of the unknown parameters. Simplification can 
be made at the cost of deterioration of the solution quality 
by introducing a concept of the gradient vector norm 

 

 

 

 

 

dS
dΔ

 

 

 

 
= 

⎝
⎛

⎠
⎞dS

1

dΔ
1

2

 +...+ 
⎝
⎛

⎠
⎞dSK

dΔK

2

. 

 
This makes it possible to use completely the above–
described variant with individual gradient image. 

At last, let us transfer to consideration of the main 
problem of the texture analysis of multidimensional video 
data with excluded contours of large gradient. 

As the texture manifests itself as a spatial image 
characteristic, initial images should be represented in the 
form of fragments, and the statistical characteristics of 
every fragment should be studied. 

Let us use one of the criteria for testing hypotheses of 
homogeneity of two samples7 using as a test the 
Kolmogorov–Smirnov distance between multidimensional 
empirical distributions retrieved on pairs of fragments being 
compared. 

Let {z 
ijk} and {v 

ijk} be the sets of radio brightness 
recorded on two image fragments being analyzed for 
homogeneity with the continuous integral distribution 
functions F(z) and G(z), respectively. In this case, a 
measure of identity of the image fragment textures is a 
value of the Kolmogorov–Smirnov distance between the 
multidimensional distributions retrieved on the 
corresponding fragments7 

 

Dm n = sup
{z}

 ⏐Fm(z) – Gn(z)⏐, (8) 

 

where Fm(⋅) and Gn(⋅) are the multidimensional empirical 

distribution functions of the following form: 
 

Fm(z) = 
1
m ∑

{i, j}

  Ï
k=1

K

 C (z k – zi
 
j
 
k), 

(9)

 

Gn(z) = 
1
n ∑

{i, j}

  Ï
k=1

K

 C (z k – υi
 
j
 
k), 
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m is the number of pixels in the fragment {z 
ijk}; n is the 

number of pixels in the fragment {v 
ijk}; moreover, these 

fragments have no elements belonging to contour if it is; 
C(⋅) is the comparison function, 
C(t) = {1, t ≥ 0; 0, t < 0}. 

It is necessary to test the hypothesis H
0
 that the integral 

functions of brightness distribution being retrieved on these 
fragments are the same in the statistical sense, and two 
samples from which they have been retrieved belong to the 
same statistical ensemble. This is indicative of statistical 
homogeneity of the pair of fragments being compared. The 
alternative H

1
 states inequality of integral density functions 

and, hence, absence of the statistical equivalence of the 
textures of these fragments. 

In other words, the hypothesis H
0
: F(z) = G(z) 

should be tested against the alternative H
1
: F(z) ≠ G(z). 

But it should be borne in mind that for statistics (8) of 
bilateral test for homogeneity, the asymptotic 
distributions Dmn have been obtained only for the one–

dimensional functions F(⋅) and G(⋅). 
The way out in this situation can be found using an 

idea of decomposition of the mixed statistics Dmn into the 

component distributions subsequently used to construct 
the Bayes decision rule for testing the hypotheses H

0
 and 

H
1
 as in the case of model (4). 

In this case, a process of clustering the texture–
homogeneous fragments is constructed in the following 
manner. Initial multidimensional image is decomposed by the 
coordinate grid with a given step into individual 
multidimensional fragments with the magnitudes of radio 
brightness {z 

ijk}, i = 1, ..., lx; j = 1, ..., ly; k = 1, ..., K. The 

size of fragments lx×ly is chosen for reasons that the texture 

features can manifest themselves completely within the 
fragment. In this case, the contradictory requirements must be 
taken into account, namely, choosing a fragment of larger 
dimensions, its texture characteristics can be described more 
completely thereby increasing the stability of distribution 
estimations, but the accuracy of presentation of homogeneity 
zone boundaries deteriorates in details; moreover, within larger 
fragment the texture internal homogeneity most likely will be 
disrupted. 

 

Once the set of image fragments is fixed, we choose 
one of them as a reference and subsequently each 
remaining – as the second one. Then degree of 
homogeneity of the fragment pairs is evaluated in the 
sense of distance (8). This process yields the statistics 
{Dmnj}, j = 1, ..., M, where M is the number of 

fragments being compared with the reference one. 
According to this statistics, we construct the mixed 
distribution histogram describing the behavior of Dmn for 

the hypothesis H
0
 and alternative H

1
. 

Using again model (4) and assigning the parametric 
approximations of unknown conditional density functions 
for the hypothesis H

0
 and alternative H

1
, these functions 

can be retrieved together with a priori cluster 
probabilities by solving a problem of identification of 
distribution mixture (6). After that the decision rule for 
the hypothesis H

0
 and alternative H

1
 has the standard 

Bayes form given by Eq. (7). Among the possible variants 
of the choice of the reference fragment, the variant is 
found by exhaustion for which the histogram of Dmn 

statistical distribution is concentrated near zero to the 
greatest extent that testifies the compactness of the 
cluster. 

This variant with its reference fragment is chosen as 
a working one for clustering of fragments. The decision 
rule divides all set of fragments into the set comprising a 
class of texture–homogeneous fragments and the set of 
fragments out of this class; the latter ones are again 
subjected to the above–described procedure of choice of 
the reference fragment with further clustering. 

After a certain number of iterations some fragments 
remain that can be characterized as heterogeneous ones or 
observation overshoots. 

Let us considered an illustrative example of 
segmentation of a concrete satellite photograph, which 
was kindly provided at our disposal by V.I. Khamarin 
(Institute of Ecology of Natural Complexes of the 
Siberian Branch of the Russian Academy of Sciences). The 
photograph is a set of three digitized magnitudes of radio 
brightness recorded in the spectral ranges 0.5–0.6 μm 
(the first channel), 0.6–0.7 μm (the second channel), and 
0.8–0.9 μm (the third channel). 

 

 
FIG. 1. Initial image in the third channel. 
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The fragment under analysis displays the radio brightness 
of the forest zone of the Siberian taiga with cleared strips and 
felling areas and has a dimension of 640×488 pixels. Figure 1 
displays initial image in the third channel. To distinguish 
contours in the video data, the window of facet model (1) was 
set with the parameter l = 1, and the image of the gradients 
determined by the norm of the spatial gradient was obtained. 
The histogram of gradient distribution shown in Fig. 2a 
provided initial information for solving a problem of 
decomposition of the mixed distribution into two component 
density functions (4), assigned in the form of the parametric 
Jonson SB–distribution (5). The retrieved density functions 

with the weight coefficients are depicted in Fig. 2a. They 
determine Bayes decision rule (7) for recognition of contours 
in the gradient image. The distinguished contours are 
displayed by light tone in Fig. 3. Then the video data (a 
rectangle of 640×488 pixels) were decomposed, with the help 
of a coordinate grid, into individual fragments of 16×16 pixels 
and the obtained set of fragments was automatically classified, 
excepting those containing elements of contours. 

Using three–dimensional Kolmogorov–Smirnov distance 
(8) on pairs of fragments being analyzed one of which was 
chosen as a reference fragment and each remaining was 
successively chosen as the second, the histograms of the 
distribution of the statistics {Dmn} were obtained. One of the 

obtained mixed distribution of the statistic Dmn retrieved with 

the help of the nonparametric estimation of the unknown 
density function with the Epanechnikov kernel is displayed in 
Fig. 2b. The decision rule forms the next class of statistically 
homogeneous fragments from a part of the whole set of 
fragments connected with the left mode of the retrieved  

density function. Five classes were distinguished at the stage 
of clustering. They are shown by variation of gray tone in 
Fig. 3. 

It should be noted in conclusion that in the above–
described scheme of construction of the automatic 
classification procedure the other bilateral criteria can be 
used to test two samples for homogeneity, for example, ω2–
criterion.7  

 

 
 

FIG. 2. Histogram of the image gradient distribution, its 
approximation (a), and nonparametric retrieving of the 
Kolmogorov–Smirnov distance (b). 
 

 

 
FIG. 3. Image with distinguished contours and classes of homogeneous fragments. 
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