Vol. 38, issue 12, article # 3

Bykov A. D., Voronin B. A. Isotopic shift of vibrational energy levels of molecules: H2S isotopologues. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 983–988. DOI: 10.15372/AOO20251203 [in Russian].
Copy the reference to clipboard

Abstract:

Determining the isotopic shift of vibrational energy levels of molecules is a challenging task in molecular spectroscopy. Detailed knowledge of the vibrational-rotational energy spectrum is necessary, for example, for laser isotope separation. In this paper, a calculation method based on high-order perturbation theory and summation of series by the method of quadratic Padé–Hermite approximants is proposed. The method is applied to determine the isotopic shifts of vibrational energy levels of all stable hydrogen sulfide isotopologues. Calculations were performed using ab initio intramolecular potential function within a simple quartic force field model. To refine the results, corrections were introduced to account for the error in ab initio data. The results of summation of perturbation theory series coincide with the levels determined by the variational method with accuracy of 10-10–10-2 cm-1. The corrections reduced the root-mean-square error in the available experimental level values to 3.5 cm-1 (0.3%).

Keywords:

H2S, hydrogen sulfide, isotopic shift, vibrational level, perturbation theory, Padé–Hermite approximants

References:

1. Zuev V.E., Makushkin Yu.S. Ponomarev Yu.N. Spektroskopiya atmosfery. Ser. Sovremennye problemy atmosfernoi optiki. L.: Gidrometeoizdat, 1987. V. 3. 250 p.
2. Perevalov V.I., Ponomarev Yu.N., Ptashnik I.V., Sinitsa L.N. Molekulyarnaya spektroskopiya vysokogo razresheniya v IOA SO RAN. Sovremennoe sostoyanie teoreticheskikh i eksperimental'nykh issledovanii // Optika atmosf. i okeana. 2019. V. 32, N 9. P. 687–702. DOI: 10.15372/AOO20190903; Perevalov V.I., Ponomarev Yu.N., Ptashnik I.V., Sinitsa L.N. High-resolution molecular spectroscopy at the Institute of Atmospheric Optics: Current status of theoretical and experimental research // Atmos. Ocean. Opt. 2020. V. 33, N 1. P. 10–26. DOI: 10.1134/S102485602001011X.
3. Bykov A.D., Makushkin Yu.S., Ulenikov O.N. Izotopozameshchenie v mnogoatomnykh molekulakh. Novosibirsk: Nauka, 1985. 157 p.
4. Bykov A.D., Voronin B.A., Dudaryonok A.S., Polovtseva E.R. Sdvig kolebatel'nykh polos pri izotopozameshchenii v molekulakh // Optika atmosf. i okeana. 2021. V. 34, N 4. P. 237–244. DOI: 10.15372/AOO20210401.
5. Goodson D.Z., Sergeev A.V. On the use of algebraic approximants to sum divergent series for Fermi resonances in vibrational spectroscopy // J. Chem. Phys. 1999. V. 110. P. 8205–8206. DOI: 10.1063/1.478722.
6. Bykov A.D., Voronin B.A. Izotopicheskii sdvig kolebatel'no-vrashchatel'nykh linii SO2 // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 869–873. DOI: 10.15372/AOO20231101; Bykov A.D., Voronin B.A. Isotopic shifts of vibrational-rotational lines of SO2 // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 7–13. DOI: 10.1134/S1024856023700021.
7. Child M.S., Naumenko O.V., Smirnov M.A., Brown L.R. Local mode axis tilting in H2S // Mol. Phys. 1997. V. 92, N 5. P. 885–893. DOI: 10.1080/002689797169826.
8. Kozin I.N., Jensen P. Fourfold clusters of rovibrational energy levels for H2S studied with a potential energy surface derived from experiment // J. Mol. Spectrosc. 1994. V. 163, N 2. P. 483–509. DOI: 10.1006/jmsp.1994.1041.
9. Naumenko O.V., Polovtseva E.R. Kolebatel'nyi spektr molekuly serovodoroda // Optika atmosf. i okeana. 2004. V. 17, N 11. P. 895–898.
10. Tyuterev Vl.G., Tashkun S.A., Schwenke D.W. An accurate isotopically invariant potential function of the hydrogen sulphide molecule // Chem. Phys. Lett. 2001. V. 348, N 3–4. P. 223–234. DOI: 10.1016/S0009-2614(01)01093-4.
11. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Glushkov P.A., Scherbakov A.P., Horneman V.-M., Sydow C., Maul C., Bauerecker S. Extended analysis of the high resolution FTIR spectra of H2MS (M = 32, 33, 34, 36) in the region of the bending fundamental band: The v2 and 2v2 - v2 bands: Line positions, strengths, and pressure broadening widths // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 216. P. 76–98. DOI: 10.1016/j.jqsrt.2018.05.009.
12. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Zhang F., Raspopova N.I., Sydow C., Bauerecker S. Rovibrational analysis of the first hexad of hydrogen sulfide: Line position and strength analysis of the 4v2 band of H232S and H234S for HITRAN applications // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 255, N 107236. DOI: 10.1016 /j.jqsrt.2020.107236.
13. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Ersin T., Sydow C., Maul C., Bauerecker S. Comprehensive rovibrational analysis of deuterated hydrogen sulfide in the region of the v2, 2v2, and 2v2 - v2 bands: D232S, D234S, and D233S isotopologues // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 252, N 107106. DOI: 10.1016/j.jqsrt.2020.107106.
14. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Belova A.S., Sydow C., Maul C., Bauerecker S. Extended high resolution analysis of the second triad of D232S, D233S and D234S // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 245, N 106879. DOI: 10.1016/j.jqsrt.2020.106879.
15. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Sydow C., Bauerecker S. First detection of the rare hydrogen sulfide isotopologue: The pure rotational and v2 bands of HD33S // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. P. 108–115. DOI: 10.1016/j.jqsrt.2019.05.004.
16. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Belova A.S., Morzhikova Y.B., Sydow C., Maul C., Bauerecker S. Line strength analysis of the second overtone 3v2 band of D232S // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 270, N 107686. DOI: 10.1016/j.jqsrt.2021.107686.
17. Sydow C., Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Glushkov P.A., Maul C., Bauerecker S. Extended analysis of the FTIR high-resolution spectrum of D232S in the region of the v2 band // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 224. P. 460–473. DOI: 10.1016/j.jqsrt.2018.12.007.
18. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Raspopova N.I., Sydow C., Bauerecker S. Extended analysis of the v3 band of HD32S: Line positions, energies, and line strengths // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 230. P. 131–141. DOI: 10.1016/j.jqsrt.2019.04.005.
19. Ĉižek J., Špirko V., Bludsky O. On the use of divergent series in vibrational spectroscopy. Two- and three-dimensional oscillators // J. Chem. Phys. 1993. V. 99. P. 7331–7336. DOI: 10.1063/1.465714.
20. Goodson D.Z. Resummation methods // WIREs Comput. Mol. Sci. 2012. V. 2. P. 743–761. DOI: 10.1002/wcms.92.
21. Duchko A.N., Bykov A.D. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule // J. Chem. Phys. 2015. V. 143, N 15. P. 154102. DOI: 10.1063/1.4933239.
22. Krasnoshchekov S.V., Dobrolyubov E.O., Syuan'khao Chan. Fundamental'nyi analiz singulyarnykh i rezonansnykh yavlenii v kolebatel'nykh poliadakh molekuly diftor-sililena // Opt. i spektroskop. 2020. V. 128, iss. 12. P. 1795–1805. DOI: 10.21883/OS.2020.12.50313.185-20.
23. Krasnoshchekov S.V., Dobrolyubov E.O., Syzgantseva M.A., Palvelev R.V. Rigorous vibrational Fermiresonance criterion revealed: Two different approaches yield the same result // Mol. Phys. 2020. V. 118, N 11. DOI: 10.1080/00268976.2020.1743887.
24. Dobrolyubov E.O., Ikonomov N.R., Knizhnerman L.A., Suetin S.P. Rational Hermite–Padé approximants vs Padé approximants // arXiv: 2306.07063v2[math.cv]. 2023.
25. Krasnoshchekov S.V., Efremov I.M., Polyakov I.V., Millionshchikov D.V. Systematic ab initio calculation of spectroscopic constants for A-reduced rotational effective Hamiltonians of asymmetric top molecules using normal ordering of cylindrical angular momentum operators // J. Chem. Phys. 2024. V. 161. P. 234105. DOI: 10.1063/5.0239949.
26. Dobrolyubov E.O., Polyakov I.V., Millionshchikov D.V., Krasnoshchekov S.V. Vibrational resonance phenomena of the OCS isotopologues studied by resummation of high-order Rayleigh–Schrödinger perturbation theory // J. Quant. Spectrosc. Radiat. Transfer. 2024. V. 316. P. 108909. DOI: 10.1016/j.jqsrt.2024.108909.
27. Suetin S.P. Asimptoticheskie svoistva polinomov Ermita–Pade i tochki Katsa // Uspekhi matem. nauk. 2022. V. 77, iss. 6. P. 468. DOI: 10.4213/rm10083.
26. Bykov A.D. Resummation of the Rayleigh–Schrödinger perturbation series. Vibrational energy levels of the H2S molecule // Mol. Phys. 2021. V. 119, N 9. DOI: 10.1080/00268976.2021.1886362.
29. Sergeev Al.V., Goodson D.Z. Summation of asymptotic expansions of multiple-valued functions using algebraic approximants: Application to anharmonic oscillators // J. Phys. A: Math. General. 1998. V. 31, N 18. DOI: 10.1088/0305-4470/31/18/018.
30. Fernandez F.M., Diaz C.G. Accurate summation of the perturbation series for periodic eigenvalue problems // Eur. Phys. J. D. 2001. V. 15, N 1. P. 41–46. DOI: 10.1007/s100530170181.
31. Jordan K.D. Applications of analytic continuation in the construction of potential energy curves // Int. J. Quantum Chem. 1975. V. 9, N S9. P. 325–336. DOI: 10.1002/qua.560090841.
32. Goodson D.Z. On the use of quadratic approximants to model diatomic potential energy curves // Mol. Phys. 2012. V. 110, N 15–16. P. 1681–1691. DOI: 10.1080/00268976.2012.670282.
33. Duchko A.N., Bykov A.D. Multivalued property of Rayleigh–Schrödinger perturbation series for vibrational energy levels of molecules // Phys. Scr. 2019. V. 94, N 10. P. 105403. DOI: 10.1088/1402-4896/ab29fe.
34. Wang M., Audi G., Kondev F.G., Huang W.J., Naimi S., Xu X. The Ame2016 atomic mass evaluation (II). Tables, graphs, and references // Chinese Phys. C. 2017. V. 41, N 3. P. 030003. DOI: 10.1088/1674-1137/41/3/030003.