Vol. 38, issue 10, article # 2
Copy the reference to clipboard
Abstract:
Based on the representation of the solution of the stochastic Helmholtz equation in the form of a path integral (Samelsohn G., Mazar R. Phys. Rev. E. 1996. V. 54, N 5) for the Kolmogorov model of the turbulence spectrum, an expression for the spatial coherence function of a spherical wave propagating in a turbulent atmosphere is derived under the assumption that the geometric-optical approximation is valid for a random phase incursion in the path integral. Estimates of the corrections to this approximation by order of magnitude are found. The obtained formula has no restrictions on the wavelength and the angle between the observation points that arise when using the parabolic and Markov approximations. The error in estimating the radius of spatial coherence in the parabolic approximation, arising from the sphericity of the wave front with an increase in the angular separation of the observation points, is calculated. It is shown that the error increases with the wavelength, and for millimeter and longer waves it can lead to an overestimation of the scale of spatial coherence of a spherical wave by few times.
Keywords:
spherical wave, coherence, turbulent atmosphere, path integral
References:
1. Rytov S.M., Kravtsov Yu.A., Tatarskii V.I. Vvedenie v statisticheskuyu radiofiziku. Part 2. Sluchainye polya. M.: Nauka, 1978. 463 p.
2. Klyatskin V.I. Statisticheskoe opisanie dinamicheskikh sistem s fluktuiruyushchimi parametrami. Sovremennye problemy fiziki. M: Nauka, 1975. 239 p.
3. Gochelashvili K.S., Shishov V.I. Volny v sluchaino-neodnorodnykh sredakh // Itogi nauki i tekhniki. Radiofizika. Fizicheskie osnovy elektroniki. Akustika. V. 1. M.: VINITI, 1981. 144 p.
4. Banakh V.A., Falits A.V., Zaloznaya I.V. Pereraspredelenie energii opticheskogo izlucheniya na trassakh s otrazheniem v turbulentnoi atmosfere // Optika atmosf. i okeana. 2023. V. 36, N 9. P. 780–783. DOI: 10.15372/AOO20230910; Banakh V.A., Falits A.V., Zaloznaya I.V. Redistribution of optical radiation energy when reflecting in a turbulent atmosphere // Atmos. Ocean. Opt. 2023. V. 36, N S1. P. S101–104.
5. Banakh V.A., Falits A.V., Zaloznaya I.V. Backscatter amplification in a turbulent atmosphere and the law of conservation of energy // Opt. Lett. 2023. V. 48, N 15. P. 4053–4056. DOI: 10.1364/OL.494669.
6. Samelsohn G., Mazar R. Path-integral analysis of scalar wave propagation in multiple-scattering random media // Phys. Rev. E. 1996. V. 54, N 5. P. 5697–5706. DOI: 10.1103/PhysRevE.54.5697.
7. Gel'fand I.M., Yaglom A.M. Integrirovanie v funktsional'nykh prostranstvakh i ego primeneniya v kvantovoi fizike // Uspekhi matematicheskikh nauk. 1956. V. 11, N 1. P. 77–114.
8. Feynman R.P., Hibbs A.R. Quantum Mechanics and Path Integrals. New York: McGraw-Hill, 1965. 371 р.
9. Tatarskii V.I., Zavorotnyi V.U. On the connection between the extended Huygens-Fresnel principle and the path-integral approximate computation based on orthogonal expansions // Proc. SPIE. 1986. V. 642. P. 276–281. DOI: 10.1117/12.975509.
10. Charnotskii M.I., Gozani J., Tatarskii V.I., Zavorotnyi V.U. Wave propagation theories in random media based on the path-integral approach // Progress in Optics. Elsevier, 1993. V. 32. P. 203–266.
11. Fock V.A. Papers on Quantum Field Theory. Leningrad: Leningrad State University Press, 1957. 576 р.
12. Fradkin E.S. Metod funktsii Grina v teorii kvantovannykh polei i kvantovoi statistike // Trudy FIAN. 1965. V. 29, N 7. P. 3–138.
13. Fradkin E.S. Application of functional methods in a quantum field theory and quantum statistics (II) // Nucl. Phys. 1966. V. 76. P. 588–624. DOI: 10.1016/0029-5582(66)90200-8.
14. Tatarskii V.I. O priblizhennom vychislenii integralov po traektoriyam // Metod Monte-Karlo v vychislitel'noi matematike i matematicheskoi fizike. Novosibirsk: AN SSSR, Sib. otd-nie VTs, 1976. P. 67–74.
15. Tatarskii V.I. O priblizhennom vychislenii uslovnykh vinerovskikh i nekotorykh feinmanovskikh integralov po traektoriyam // Metod Monte-Karlo v vychislitel'noi matematike i matematicheskoi fizike. Novosibirsk: AN SSSR, Sib. otd-nie VTs, 1976. P. 75–90.
16. Zuev V.E., Banakh V.A., Pokasov V.V. Optika turbulentnoi atmosfery. L.: Gidrometeoizdat, 1988. 270 p.
17. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
18. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoi atmosfere. M.: Nauka, 1976. 280 p.
19. Belen'kii M.S., Lukin V.P., Mironov V.L., Pokasov V.V. Kogerentnost' lazernogo izlucheniya v atmosfere. Novosibirsk: Nauka, 1985. 176 p.
20. Banakh V.A., Mironov V.L. Phase approximation of the Huygens–Kirchhoff method in problems of laser beam propagation in the turbulent atmosphere // Opt. Lett. 1977. V. 1. P. 172–174. DOI: 10.1364/OL.1.000172.