Vol. 33, issue 05, article # 12

Zuev V. V., Borovko I. V., Krupchatnikov V. N., Saveljeva E. S. Influence of the temperature of the lower subtropical stratosphere on the Antarctic polar vortex dynamics. // Optika Atmosfery i Okeana. 2020. V. 33. No. 05. P. 415–418. DOI: 10.15372/AOO20200512 [in Russian].
Copy the reference to clipboard


The stratospheric polar vortex persistence in the winter-spring period is one of key factors of the duration and extent of stratospheric ozone depletion in a polar region. The Arctic polar vortex reaches its peak intensity in winter, whereas the Antarctic vortex usually strengthens in early spring. As a result, the strong ozone depletion is observed every year from August to November over the Antarctic, while short-term ozone loss occasionally occurs over the Arctic from January to March. In this work, we examine the reason for the high strength and persistence of the Antarctic polar vortex in the winter-spring period. Based on the ERA-Interim reanalysis data, we show a high agreement between the seasonal variations in the temperature in the lower subtropical stratosphere and zonal wind in the subpolar and polar lower stratosphere in the Southern Hemisphere. The results of numerical simulations using PlaSim–ICMMG–1.0 show acceleration of zonal wind in the subpolar region with an increase in the temperature of the subtropical stratosphere. Thus, the winter-spring strengthening of the Antarctic polar vortex occurs due to an increase in the stratospheric equator-to-pole temperature gradient as a result of the seasonal temperature growth in the lower subtropical stratosphere in this period.


Antarctic polar vortex, subtropical stratosphere, polar ozone depletion


  1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613.
  2. Waugh D.W., Polvani L.M. Stratospheric polar vortices // The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010. V. 190. P. 43–57.
  3. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The Stratosphere: Dynamics, Transport, and Chemistry. 2010. V. 190. P. 157–171.
  4. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758.
  5. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31, N 21. P. L21104.
  6. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
  7. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51, N 20. P. 2973–2994.
  8. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54, N 18. P. 2241–2260.
  9. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 969 p.
  10. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Am. Meteorol. Soc. 2017. V. 98, N 1. P. 37–44.
  11. Driscoll S., Bozzo A., Gray L.J., Robock A., Stenchikov G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions // J. Geophys. Res. D. 2012. V. 117, N 17. P. D17105.
  12. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex // Dynam. Atmos. Oceans. 2019. V. 87. P. 101097.
  13. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Q. J. Roy. Meteor. Soc. 2011. V. 137, N 656. P. 553–597.
  14. Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods // J. Atmos. Sol.-Terr. Phys. 2019. V. 190. P. 1–5.
  15. Platov G., Krupchatnikov V., Martynova Yu., Borovko I., Golubeva E. A new earth's climate system model of intermediate complexity, PlaSim-ICMMG-1.0: Description and performance // IOP Conf. Series: Earth Env. Sci. 2017. V. 96. P. 12005.