Vol. 38, issue 12, article # 6
Copy the reference to clipboard
Abstract:
Atmospheric ions play an important role in the formation of aerosol particles and affect public health. At the same time, measurements of their concentration in Russia are extremely insufficient. To fill the gap, the Fonovaya observatory began monitoring the ion content in July 2019. Analysis of the data obtained showed that from July 2019 to May 2024, the concentrations of both positive and negative aeroions were in the range 220–720 cm-3. Negative ions have a trend of +7%/year, and positive ions have a trend of -1.2%/year. Ions of both signs have a pronounced annual cycle with a maximum in summer and a minimum in winter. The long-term average daily cycle revealed that the concentrations of ions of both signs change synchronously. The minimum of their concentration is observed in the morning hours and the maximum in the afternoon. The results allow us to clarify the role of ions in atmospheric processes.
Keywords:
atmosphere, air, ion, concentration, annual variation, daily cycle, unipolarity coefficient, nanoparticle, neutral particle, nucleation
Figures:
References:
1. Hirsikko A., Nieminen T., Gagne S., Lehtipalo K., Manninen H.E., Ehn M., Horrak U., Kerminen V.-M., Laakso L., McMurry P.H., Mirme A., Mirme S., Petaja T., Tammet H., Vakkari V., Vana M., Kulmala M. Atmospheric ions and nucleation: A review of observations // Atmos. Chem. Phys. 2011. V. 11, N 2. P. 767–798. DOI: 10.5194/acpd-10-24245-2010.
2. Yu F., Turco R.P. The size-dependent charge fraction of sub-3-nm particles as a key diagnostic of competitive nucleation mechanisms under atmospheric conditions // Atmos. Chem. Phys. 2011. V. 11, N 18. P. 9451–9463. DOI: 10.5194/acpd-11-11281-2011.
3. Fuks N.A. Mekhanika aerozolei. M.: AN SSSR, 1955. 352 p.
4. Rozenberg G.V., Lyubovceva Yu.S., Gorchakov G.I. Fonovyi aerozol' Abastumani // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N 8. P. 822–839.
5. Smirnov B.M. Elektricheskii cikl v zemnoi atmosfere // Uspekhi fiz. nauk. 2014. V. 184, N 11. P. 1153–1176.
6. Arnold F. Atmospheric ions and aerosol formation // Planetary Atmospheric Electricity. Luxemburg: Springer Science Business Media, 2008. P. 225–238.
7. SANPIN 1.2.3685-21 «Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya» // Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha Rossiiskoi Federacii N 2 от 28 january 2021 year. 1024 p.
8. Wilson C.T.R. Atmospheric electricity // Nature. 1900. V. 62, N 1598. P. 149–151. DOI: 10.1038/068102d0.
9. Wilson C.T.R. Nucleu and ions // Nature. 1903. V. 69, N 1779. P. 103–104.
10. Harrison R.G., Tammet H. Ions in the terrestrial atmosphere and other solar systems atmospheres // Planetary Atmospheric Electricity. Luxemburg: Springer Science Business Media, 2008. P. 107–118.
11. Kazil J., Harrison R.G., Lovejoy E.R. Tropospheric new particle formation and role of ions // Planetary Atmospheric Electricity. Luxemburg: Springer Science Business Media, 2008. P. 241–255.
12. Smirnov V.V. Ionizaciya v troposfere. SPb.: Gidrometeoizdat, 1992. 312 p.
13. Komppula M., Vana M., Kerminen V.-M., Lihavainen H., Viisanen Y., Hõrrak U., Komsaare K., Tamm E., Hirsikko A., Laakso L. Kulmala M. Size distributions of atmospheric ions in the Baltic Sea region // Boreal Environ. Res. 2007. V. 12, N 3. P. 323–336.
14. Chen X., Virkkula A., Kerminen V.-M., Manninen H.E., Busetto M., Lanconelli C., Lupi A., Vitale V., Del Guasta M., Grigioni P., Väänänen R., Duplissy E.-M., Petäjä T., Kulmala M. Features in air ions measured by an air ion spectrometer (AIS) at Dome C // Atmos. Chem. Phys. 2017. V. 17, N 22. P. 13783–13800. DOI: 10.5194/acp-17-13783-2017.
15. Gorchakov G.I., Karpov A.V., Gushchin R.A., Datsenko O.I. Elektricheskie processy v vetropeschanom potoke na opustynennyh territoriyah // Optika atmosf. i okeana. 2024. V. 37, N 6. P. 461–467. DOI: 10.15372/AOO20240603; Gorchakov G.I., Karpov A.V., Gushchin R.A., Datsenko O.I. Electrical processes in a wind-sand flux on desertified areas // Atmos. Ocean. Opt. 2024. V. 37, N 5. P. 630–636.
16. Aloyan A.E., Ermakov A.N., Arutyunyan V.O. Modelirovanie regional'nogo vliyaniya ionov na formirovanie aerozolya v atmosfere // Izv. RAN. Fiz. atmosf. i okeana. 2022. V. 58, N 3. P. 292–299.
17. Aloyan A.E., Ermakov A.N., Arutyunyan V.O. O vliyanii atmosfernyh ionov na obrazovanie aerozolya v troposfere: chislennoe modelirovanie // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 4. P. 467–473.
18. Boyarchuk K.A. Ocenka koncentracii kompleksnyh otricatel'nyh ionov pri radioaktivnom zagryaznenii troposfery // ZhTF. 1999. V. 69, N 3. P. 74–76.
19. Zukau V.V., Yakovleva V.S., Karataev V.D., Nagorskii P.M. Ionizaciya prizemnoi atmosfery izlucheniem pochvennyh radionuklidov // Izv. TPU. 2010. V. 317, N 2. P. 171–175.
20. Chensyun' Yu., Chzhiczyan' L., Bychkov V.L., Bychkov D.V., Golubkov M.G., Maslov T.A., Rodionov I.D., Rodionova I.P., Stepanov I.G., Umanskii S.Ya., Golubkov G.V. Raspredelenie koncentracii polozhitel'nyh i otricatel'nyh ionov v troposfere // Himicheskaya fizika. 2022. V. 41, N 10. P. 28–37.
21. Anisimov S.V., Galichenko S.V., Afinogenov K.V., Makrushin A.P., Shihova N.M. Ob"emnaya aktivnost' radona i ionoobrazovanie v nevozmushchennoi nizhnei atmosfere: nazemnye nablyudeniya i chislennoe modelirovanie // Fizika Zemli. 2017. N 1. P. 155–170.
22. Anisimov S.V., Galichenko S.V., Aphinogenov K.V., Klimanova E.V., Kozmina A.S. Small air ion statistics near the earth’s surface // Atmos. Res. 2022. V. 267. P. 105913. DOI: 10.1016/j.atmosres.2021.105913.
23. Bezrukov L.B., Gromceva A.F., Zavarzina V.P., Karpikov I.S., Kurlovich A.S., Lebedev D.A., Mezhoh A.K., Naumov P.Yu., Silaeva S.V., Sinyov V.V. Nablyudenie izbytka polozhitel'nyh aeroionov v podzemnyh polostyah // Geomagnetizm i aeronomiya. 2022. V. 62, N 6. P. 755–768.
24. Smirnov B.M. Processy atmosfernogo elektrichestva // Vestn. OIVT RAN. 2023. N 12. P. 9–15.
25. Monin A.S. Prognoz pogody kak zadacha fiziki. M.: Nauka, 1969. 184 p.
26. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Y.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs // Proc. SPIE. 2018. V. 10833. P. 108337Z. DOI: 10.1117/12.2504388.
27. Horrak U., Aalto P.P., Salm J., Komsaare K., Tammet H., Makela J.M., Laakso L., Kulmala M. Variation and balance of positive air ion concentrations in a boreal forest // Atmos. Chem. Phys. 2008. V. 8, N 3. P. 655–675. DOI: 10.5194/acpd-7-9465-2007.
28. Holopcev A.V., Sedov D.V. Klimaticheskie normy povtoryaemosti groz nad gorodami Sibiri dlya mesyacev pozharoopasnogo sezona pri sovremennom poteplenii klimata // Sibirskii pozharno-spasatel'nyi vestnik. 2024. V. 32, N 1. P. 169–182.
29. Svechnikova E.K., Il'in N.V., Mareev E.A. Ocenka raspredeleniya elektricheskogo zaryada v oblake po dannym o variacii potoka energichnyh chastic pod oblakom // Dokl. RAN. Nauki o Zemle. 2021. V. 496, N 2. P. 198–203.
30. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskii P.M., Samohvalov I.V. Elektroopticheskie yavleniya v atmosfere. Tomsk: Izd-vo NTL, 2015. 316 p.
31. Sulo J., Lampilahti J., Chen X., Kontkanen J., Nieminen T., Kerminen V.-M., Petäjä T., Kulmala M., Lehtipalo K. Measurement report: Increasing trend of atmospheric ion concentrations in the boreal forest // Atmos. Chem. Phys. 2022. V. 22, N 23. P. 15223–15242. DOI: 10.5194/acp-22-15223-2022.
32. Miao S., Zhang X., Han Y., Sun W., Liu C., Yin S. Random forest algorithm for the relationship between negative air ions and environmental factors in an urban park // Atmosphere. 2018. V. 9, N 12. P. 463. DOI: 10.3390/atmos9120463.
33. Dos Santos V.N., Herrmann E., Manninen H.E., Hussein T., Hakala J., Nieminen T., Aalto P.P., Merkel M., Wiedensohler A., Kulmala M., Petäjä T., Hämeri K. Variability of air ion concentrations in urban Paris // Atmos. Chem. Phys. 2015. V. 15, N 23. P. 13717–13737. DOI: 10.5194/acp-15-13717-2015.
34. Kalivitis N., Stavroulas I., Bougiatioti A., Kouvarakis G., Gagne S., Manninen H.E., Kulmala M., Mihalopoulos N. Night-time enhanced atmospheric ion concentrations in the marine boundary layer // Atmos. Chem. Phys. 2012. V. 12, N 8. P. 3627–3638. DOI: 10.5194/acp-12-3627-2012.
35. Wan X., Zhou R., Li L., Yang C., Lian J., Zhang J., Liu S., Xing W., Yuan Y. Factors influencing the concentration of negative air ions in urban forests of the Zhuyu Bay scenic area in Yangzhou, China // Atmosphere. 2024. V. 15, N 3. P. 316. DOI: 10.3390/atmos15030316.
36. Belan B.D. Ozon v troposfere. Tomsk: Izd-vo IOA SO RAN, 2010. 488 p.
37. Li H., Canagaratna M.R., Riva M., Rantala P., Zhang Y., Thomas S., Heikkinen L., Flaud P.-M., Villenave E., Perraudin E., Worsnop D., Kulmala M., Ehn M., Bianchi F. Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: Insights into monoterpene and sesquiterpene oxidation processes // Atmos. Chem. Phys. 2021. V. 21, N 5. P. 4123–4147. DOI: 10.5194/acp-21-4123-2021.
38. Yin R., Li X., Yan C., Cai R., Zhou Y., Kangasluoma J., Sarnela N., Lampilahti J., Petäjä T., Kerminen V.-M., Bianchi F., Kulmala M., Jiang J. Revealing the sources and sinks of negative cluster ions in an urban environment through quantitative analysis // Atmos. Chem. Phys. 2023. V. 23, N 9. P. 5279–5296. DOI: 10.5194/acp-23-5279-2023.
39. Katz D.J., Abdelhamid A., Stark H., Canagaratna M.R., Worsnop D.R., Browne E.C. Chemical identification of new particle formation and growth precursors through positive matrix factorization of ambient ion measurements // Atmos. Chem. Phys. 2023. V. 23, N 9. P. 5567–5585.
40. Arshinov M.Yu., Belan B.D., Garmash O.V., Davydov D.K., Demakova A.A., Ezhova E.V., Kozlov A.V., Kulmala M., Lappalainen H., Petäjä T. Vzaimosvyaz' koncentracii atmosfernyh ionov i radona po dannym izmerenii v observatorii «Fonovaya» // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 12–18. DOI: 10.15372/AOO20220102; Arshinov M.Yu., Belan B.D., Garmash O.V., Davydov D.K., Demakova A.A., Ezhova E.V., Kozlov A.V., Kulmala M., Lappalainen H., Petäjä T. Correlation between the concentrations of atmospheric ions and radon as judged from measurements at the Fonovaya Observatory // Atmos. Ocean. Opt. 2022. V. 35, N 1. P. 36–42.
41. Tuovinen S., Lampilahti J., Kerminen V.-M., Kulmala M. Intermediate ions as indicator for local new particle formation // Aerosol Res. 2024. V. 2, N 1. P. 93–105. DOI: 10.5194/ar-2024-4.
42. Huang Z., Ge X., Liu D., Tong L., Nie D., Shen F., Yang M., Wu Y., Xiao H., Yu H. Atmospheric particle number size distribution and size-dependent formation rate and growth rate of neutral and charged new particles at a coastal site of eastern China // Atmos. Environ. 2022. V. 270, N 118899. DOI: 10.1016/j.atmosenv.2021.118899.
43. Li A., Li Q., Zhou B., Ge X., Cao Y. Temporal dynamics of negative air ion concentration and its relationship with environmental factors: Results from long-term on-site monitoring // Sci. Total Environ. 2022. V. 832. P. 155057. DOI: 10.1016/j.scitotenv.2022.155057.
44. Li Z., Li C., Chen B., Hong Y., Jiang L., He Z., Liu J. Temporal dynamics of negative air ion concentrations in Nanjing Tulou scenic area // Atmosphere. 2024. V. 15, N 3. P. 258. DOI: 10.3390/atmos15030258.