Vol. 38, issue 12, article # 5

Chebunina N. S., Golobokova L. P., Egorov V. I., Khodzher T. V. Composition and morphology of surface atmospheric aerosol particles at the urbanized station Irkutsk in the Southern Baikal region. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 996–1003. DOI: 10.15372/AOO20251205 [in Russian].
Copy the reference to clipboard

Abstract:

The problem of aerosol pollution of the atmosphere and associated climate change has become increasingly relevant. Of particular interest are physicochemical properties and structure of atmospheric aerosols. Being an important component of polluted air, aerosols affect various atmospheric processes, the environment, and human health. Analysis of the morphology and composition of aerosol particles allows us to identify the features of their behavior in the atmosphere and determine their origin. This paper studies the composition and morphology of ground-level atmospheric aerosol particles at a year-round monitoring station (Irkutsk) in different seasons of 2024 using scanning electron microscopy and X-ray spectral analysis. The main types of aerosol particles (soot, fly ash, mineral, and biogenic particles) are identified, and their shapes and sizes are determined. It has been established that mineral and biogenic particles predominate in the composition of ground-level atmospheric aerosol in Irkutsk during the warm season, while fly ash and soot particles predominate during the cold season. Brochosomes (fullerene-like structures of biological carbon-containing particles) were detected for the first time in the surface aerosol at the urban Irkutsk station. The results of this study expand our understanding of the morphological properties and composition of individual particles in surface atmospheric aerosol in the urbanized area of the Southern Baikal region.

Keywords:

elemental composition, particle morphology, atmospheric aerosol, bioaerosol, scanning electron microscopy

Figures:

References:

1. Griessbach S., Hoffmann L., Höpfner M., Riese M., Spang R. Scattering in infrared radiative transfer: A comparison between the spectrally averaging model JURASSIC and the line-by-line model KOPRA // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 127. P. 102–118. URL: DOI: 10.1016/j.jqsrt.2013.05.00.
2. Ismailov F. Atmosfernyi aerozol'. Beau Bassin: LAP LAMBERT Academic Publishing, 2019. 455 p.
3. Colbeck I., Lazaridis M. Aerosols and environmental pollution // Naturwissenschaften, 2010. V. 97. P. 117–131. DOI: 10.1007/s00114-009-0594-x.
4. Wu Z., Chen J., Wang Y., Zhu Y., Liu Y., Yao B., Zhang Y., Hu M. Interactions between water vapor and atmospheric aerosols have key roles in air quality and climate change // Natl. Sci. Rev. 2018. V. 5. P. 452–454. DOI: 10.1093/nsr/nwy063.
5. Kibet J., Bosire J., Kinyanjui T., Lang’at M., Rono N. Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health // J. Forest Environ. Sci. 2017. V. 33, N 2. P. 113–121. DOI: 10.7747/JFES.2017.33.2.113.
6. Ohlwein S., Kappeler R., Joss M.K., Künzli N., Hoffmann B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence // Int. J. Public Health. 2019. V. 64. P. 547–559. DOI: 10.1007/s00038-019-01202-7.
7. Bhattacharjee A., Mandal H., Roy M., Kusz J., Hofmeister W. Physical characteristics of fly ashes from three thermal power plants in West Bengal, India: A comparative study // Int. J. ChemTech Res. 2013. V. 5, N 2. P. 836–843.
8. Vallabani N.V.S., Gruzieva O., Elihn K., Juarez-Facio A.T., Steimer S.S., Kuhn J., Silvergren S., Portugal J., Pina B., Olofsson U., Johansson C., Karlsson H.L. Toxicity and health effects of ultrafine particles: towards an understanding of the relative impacts of different transport modes // Environ. Res. 2023. V. 231, N 116186. DOI: 10.1016/j.envres.2023.116186.
9. Kumar S., Dwivedi S.K. Physicochemical characterization and health risk modeling of atmospheric particulate matter // Phys. Chem. Earth. 2025. V. 138, N 103863. DOI: 10.1016/j.pce.2025.103863.
10. Starodymova D.P., Shevchenko V.P., Boev A.G. Veshchestvennyi i elementnyi sostav nerastvorimyh chastic v snege severo-zapadnogo poberezh'ya Kandalakshskogo zaliva Belogo morya // Uspekhi sovremennogo estestvoznaniya. 2016. N 12–2. P. 449–453.
11. Golohvast K.S., Chaplenko T.N., Pamirskii I.E. Veshchestvennyi analiz atmosfernyh vzvesei goroda Blagoveshchenska // Ekologiya cheloveka. 2014. N 4. P. 16–21. DOI: 10.17816/humeco17243.
12. Shevchenko V.P., Belorukov S.K., Boev A.G., Bulohov A.V., Karpova E.I., Korobov V.B., Savvichev A.S., Yakovlev A.E. Nerastvorimye chasticy v snezhnom pokrove Arhangel'skoi oblasti v konce zimnego perioda // Nauchnyi al'manah. 2016. V. 26, N 12–2. P. 405–414. DOI: 10.17117/na.2016.12.02.405.
13. Topchaya V.Y., Chechko V.A. Study of insoluble atmospheric material of the snow cover of the coastal zone of the southeastern Baltic Sea // Reg. Stud. Mar. Sci. 2022. V. 52, N 102399. DOI: 10.1016/j.rsma.2022.102399.
14. Popovicheva O.B., Kistler M., Kireeva E.D., Persianceva N.M., Timofeev M.A., Shoniya N.K., Kopeikin V.M. Sostav i mikrostruktura aerozolya zadymlennoi atmosfery g. Moskvy v usloviyah ekstremal'nyh pozharov augusr 2010 year // Izv. RAN. Fiz. atmosf. i okeanа. 2017. V. 53, N 1. P. 56–65. DOI: 10.7868/S0002351517010096.
15. Popovicheva O., Kireeva E., Shonija N., Zubareva N., Persiantseva N., Tishkova V., Demirdjian B., Moldanov J., Mogilnikove V. Ship particulate pollutants: Characterization in terms of environmental implication // J. Environ. Monit. 2009. V. 11. P. 2077–2086. DOI: 10.1039/b908180a.
16. Gubanova D.P., Sadovskaya N.V., Iordanskii M.A., Avilov A.S., Minashkin V.M. Morfologiya chastic prizemnogo aerozolya v Moskve po rezul'tatam analiza metodom rastrovoi elektronnoi mikroskopii // Izv. RAN. Ser. fiz. 2023. V. 87, N 10. P. 1374–1380. DOI: 10.31857/S036767652370240X.
17. Gubanova D.P., Il'enok S.S., Talovskaya A.V. Mikromineral'nyi sostav i morfologiya pylevyh chastic prizemnogo aerozolya v Moskovskom megapolise zimoi // Optika atmosf. i okeana. 2025. V. 38, N 6. P. 439–450. DOI: 10.15372/AOO20250604.
18. Li D., Yue W., Gong T., Gao P., Zhang T., Luo Y., Wang C. A comprehensive SERS, SEM and EDX study of individual atmospheric PM2.5 particles in Chengdu, China // Sci. Total Environ. 2023. V. 883, N 163668. DOI: 10.1016/j.scitotenv.2023.163668.
19. Berrellez-Reyes F., Schiavo B., Gonzalez-Grijalva B., Angulo-Molina A., Meza-Figueroa D. Characterization of soot and crystalline atmospheric ultrafine particles // Environ. Pollut. 2025. V. 364, N 1. 125314. DOI: 10.1016/j.envpol.2024.125314.
20. Xu L., Lingaswamy A.P., Zhang Y., Liu L., Wang Y., Zhang J., Ma Q., Li W. Morphology, composition, and sources of individual aerosol particles at a regional background site of the YRD, China // J. Environ. Sci. 2019. V. 77. P. 354–362. DOI: 10.1016/j.jes.2018.09.011.
21. Mushtaq Z., Bangotra P., Banerjee S., Ashish A., Suman. Study of elemental concentration, surface morphology and chemical characterization of atmospheric aerosols and trace gases in an urban environment (India) // Urban Clim. 2023. V. 47, N 101377. DOI: 10.1016/j.uclim.2022.101377.
22. Vester B.P., Ebert M., Barnert E.B., Schneider J., Kandler K., Schütz L., Weinbruch S. Composition and mixing state of the urban background aerosol in the Rhein-Main area (Germany) // Atmos. Environ. 2007. V. 41. P. 6102–6115. DOI: 10.1016/j.atmosenv.2007.04.021.
23. Marina-Montes C., Pérez-Arribas L.V., Anzano J., de Vallejuelo S.F., Aramendia J., Gómez-Nubla L., de Diego A., Manuel Madariaga J., Cáceres J.O. Characterization of atmospheric aerosols in the Antarctic region using Raman spectroscopy and scanning electron microscopy // Spectrochim. Acta A. 2022. V. 266, N 120452. P. 1386–1425. DOI: 10.1016/j.saa.2021.120452.
24. Sevimoğlu O., Kuzu S.L. Characterization of trace elements in size-segregated atmospheric particles: Insights from SEM-EDS analysis // Urban Clim. 2025. V. 62, N 102517. DOI: 10.1016/j.uclim.2025.102517.
25. Kinase T., Adachi K., Hayashi M., Hara K., Nishiguchi K., Kajino M. Characterization of aerosol particles containing trace elements (Ga, As, Rb, Mo, Cd, Cs, Tl, and others) and their atmospheric concentrations with a high temporal resolution // Atmos. Environ. 2022. V. 290, N 119360. DOI: 10.1016/j.atmosenv.2022.119360.
26. Weinbruch S., Wiesemann D., Ebert M., Schütze K., Kallenborn R., Ström J. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny Ålesund, Svalbard): An electron microscopy study // Atmos. Environ. 2012. V. 49. P. 142–150. DOI: 10.1016/j.atmosenv.2011.12.008.
27. Gosudarstvennye doklady. Irkutsk, 2012–2025. URL: https://irkobl.ru/sites/ecology/picture/ (data obrashcheniya: 26.03.2025).
28. Gosudarstvennye doklady. Irkutsk, 2012–2025. URL: https://www.mnr.gov.ru/docs/gosudarstvennye_doklady/ (data obrashcheniya: 03.04.2025).
29. Van Mal'deren H., van GrikeR., HodzheT.V., Bufetov N.S., KutsenogiK.P. Analiz individual'nyh aerozol'nyh chastic v Sibirskom regione. Predvaritel'nye rezul'taty // Optika atmosf. i okeana. 1994. V. 7, N 8. P 1154–1162.
30. Van Malderen H., van Grieken R., Khodzher T., Obolkin V., Potemkin V. Composition of individual aerosol particles above Lake Baikal, Siberia // Atmos. Environ. 1996. V. 30, N 9. P. 1453–1465. DOI: 10.1016/1352-2310(95)00430-0.
31. Golobokova L.P., Hodzher T.A., Hodzher T.V. Sovremennaya ocenka suhih osazhdenii himicheskih veshchestv na podstilayushchuyu poverhnost' v raznyh raionah aziatskoi territorii Rossii // Optika atmosf. i okeana. 2007. V. 20, N 6. P. 512–516.
32. EANET: Acid Deposition Monitoring Network in East Asia. Japan, 2025. URL: https://www.eanet.asia/location/irkutsk/ (last assess: 15.04.2025).
33. Leikauf G.D., Kim S.-H., Jang A.-S. Mechanisms of ultrafine particle-induced respiratory health effects // Exp. Mol. Med. 2020. V. 52. P. 329–337. DOI: 10.1038/s12276-020-0394-0.
34. Das A., Pantzke J., Jeong S., Hartner E., Zimmermann E.J., Gawlitta N., Offer S., Shukla D., Huber A., Rastak N., Meščeriakovas A., Ivleva N.P., Kuhn E., Binder S., Gröger T., Oeder S., Delaval M., Czech H., Sippula O., Schnelle-Kreis J., Di Bucchianico S., Sklorz M., Zimmermann R. Generation, characterization, and toxicological assessment of reference ultrafine soot particles with different organic content for inhalation toxicological studies // Sci. Total Environ. 2024. V. 951, N 175727. DOI: 10.1016/j.scitotenv.2024.175727.
35. Ezhegodniki «Sostoyanie zagryazneniya atmosfery v gorodah na territorii Rossii». M., 2025. URL: https://www.meteorf.gov.ru/product/infomate-rials/ezhegodniki/ (data obrashcheniya: 04.04.2025).
36. Omidvarborna H., Kumar A., Kim D.-S. Recent studies on soot modeling for diesel combustion // Renewable Sustainable Energy Rev. 2015. V. 48. P. 635–647. DOI: 10.1016/ j.rser.2015.04.019.
37. Pravitel'stvo Irkutskoi oblasti. Oficial'nyi portal. Irkutsk, 2012–2025. URL: https://irkobl.ru/news/3951263/?type=special (data obrashcheniya: 27.03.2025).
38. Kizil'shtein L.Ya., Dubov N.V., Shpicgluz A.L., Parada S.G. Komponenty zol i shlakov TES. M.: Energoatomizdat, 1995. 176 p.
39. Gubanova D.P., Vinogradova A.A., Sadovskaya N.V. Brochosomes and other bioaerosols in the surface layer of the atmosphere of Moscow metropolis // Atmosphere. 2023. V. 14, N 504. DOI: 10.3390/atmos14030504.
40. Xie W., Li Y., Bai W., Hou J., Ma T., Zeng X., Zhang L., An T. The source and transport of bioaerosols in the air: A review // Front. Environ. Sci. Eng. 2021. V. 15, N 3: 44. DOI: 10.1007/s11783-020-1336-8.
41. Shailaja G.S.J., Ramakodi M.P., Ramakrishna T.V.B.P.S. Review of bioaerosols from different sources and their health impacts // Environ. Monit. Assess. 2023. V. 195, N 1321. DOI: 10.1007/s10661-023-11935-x.
42. Rakitov R., Moysa A.A., Kopylov A.T., Moshkovskii S.A., Peters R.S., Meusemann K., Misof B., Dietrich C.H., Johnson K.P., Podsiadlowski L., Walden K.K.O. Brochosomins and other novel proteins from brochosomes of leafhoppers (Insecta, Hemiptera, Cicadellidae) // Insect Biochem. Mol. Biom. 2018. V. 94. P. 10–17. DOI: 10.1016/j.ibmb.2018.01.001.
43. Wittmaack K. Brochosomes produced by leafhoppers – a widely unknown, yet highly abundant species of bioaerosols in ambient air // Atmos. Environ. 2005. V. 39. P. 1173–1180. DOI: 10.1016/j.atmosenv.2004.11.003.