Vol. 38, issue 12, article # 4

Bykov A. D., Naumenko O. V., Shcherbakov A. P. Automatic identification of lines in vibrational-rotational spectra. Software based on a trainable neural network. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 989–995. DOI: 10.15372/AOO20251204 [in Russian].
Copy the reference to clipboard

Abstract:

This article presents an improved internet-accessible expert system, SLON, for analyzing high-resolution molecular spectra. It was developed in the Laboratory of Molecular Spectroscopy at Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. The SLON expert system is based on a neural network model capable of making independent decisions when analyzing combination differences formed by groups of molecular transitions from different rotational sublevels of the ground state to the same excited vibrational-rotational state. The set of features by which the neural network distinguishes the correct variant of a combination difference from random realizations has been improved. Restrictions on the size of the analyzed spectrum have been removed. The format of the databases used is now universal and enables expanding the class of molecules under study. A modern multi-platform user interface allows this program to be compiled for Windows and Linux systems. The operating principles, operational experience, and prospects for the development of the created expert system are described.

Keywords:

vibrational-rotational spectra, automatic identification, neural network, effective Hamiltonian, dipole moment

Figures:

References:

1. Gertsberg G. Kolebatel'no-vrashchatel'nye spektry mnogoatomnykh molekul. M.: Izd-vo inostrannoi literatury, 1949, 403 p.
2. Khaikin S. Neironnye seti: polnyi kurs / per. s angl. M.: Vil'yams, 2008. 1103 p.
3. Shcherbakov A.P. Primenenie metodov teorii raspoznavaniya obrazov dlya identifikatsii linii v kolebatel'no-vrashchatel'nykh spektrakh // Optika atmosf. i okeana. 1997. V. 10, N 8. P. 947–958.
4. Bykov A.D., Naumenko O.V., Pshenichnikov A.M., Sinitsa L.N., Shcherbakov A.P. Ekspertnaya sistema dlya identifikatsii linii v kolebatel'no-vrashchatel'nykh spektrakh // Opt. i spektroskop. 2003, V. 94, N 4, P. 580–589.
5. Aizerman M.A., Braverman E.I., Rozonoer L.I. Metod potentsial'nykh funktsii v zadachakh obucheniya mashin. M.: Nauka, 1970. 384 p.
6. Levin L.L. Vvedenie v teoriyu raspoznavaniya obrazov: ucheb. posobie. Tomsk: TGU, 1982, 2004, 2008. 97 p.
7. Nevel'son M.B., Khas'minskii R.Z. Stokhasticheskaya approksimatsiya i rekurentnoe otsenivanie. M.: Nauka, 1972. 304 p.
8. Papousek D., Aliev M.R. Molecular vibrational and rotational spectra // Studies in Physical and Theoretical Chemistry. 1982. V. 17. P. 324.
9. Watson J.K.G. Determination of centrifugal distortion coefficients of asymmetric top molecules // J. Chem. Phys. 1967. V. 46. P. 1935–1948. DOI: 10.1063/1.1840957.
10. Graffi S., Grecchi V., Turchetti G. Summation method for the peturbation series of generalized anharmonic oscillator // IL Novo Cimento. 1971. V. 4B, N 2. P. 313–340. DOI: 10.1007/BF02728240.
11. Starikov V.I., Tashkun S.A., Tyuterev Vl.G. Description of vibration-rotation energies of nonrigid triatomic molecules using generating function method // J. Mol. Spectrosc. 1992. V. 151. P. 130–147. DOI: 10.1016/0022-2852(92)90010-L.
12. Tyuterev Vl.G., Starikov V.I., Tashkun S.A., Mikhailenko S.N. Calculations of rotation energies of water molecule using the generating functions model // J. Mol. Spectrosc. 1995. V. 170. P. 38–58.
13. Simon B. Large orders and surability of eigenvalue peturbation theory: A mathematical overview // Int. J. Quant. Chem. 1982. V. XXI. P. 3–25. DOI: 10.1002/qua.560210103.
14. Polyansky O.L. One-dimensional approximation of effective rotational Hamiltonian of the ground state of the water molecule // J. Mol. Spectrosc. 1985. V. 112. P. 79. DOI: 10.1016/0022-2852(85)90193-6.
15. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high-accuracy computed water line list // Mon. Not. R. Astron. Soc. 2006. V. 368. P. 1087–1094. DOI: 10.15372/AOO20240501.
16. Camy-Peyret C., Flaud J.-M. Vibration-rotation dipole moment operator for asymmetric rotors // Molecular Spectroscopy: Modern Research / K. Narabari Rao (ed.). New York: Academic Press, 1985. V. III. P. 278–310.
17. The SPCAT and SPFIT Programs from H.M. Pickett. URL: https://spec.jpl.nasa.gov (last access: 08.08.2025).
18. Western C.M., Billinghurst B.E. Automatic and semiautomatic assignment and fitting of spectra with PGOPHER // Phys. Chem. Chem. Phys. 2018. V. 21. DOI: 10.1039/C8CP06493H.
19. Licari D., Tasinato N., Spada L., Puzzarini C., Barone V. VMS-ROT: A new module of the virtual multifrequency spectrometer for simulation, interpretation, and fitting of rotational spectra // J. Chem. Theory Comput. 2017. V. 13. P. 4382–4396. DOI: 10.1021/acs.jctc.7b00533.
20. Zaleski D., Prozument K. Automated assignment of rotational spectra using artificial neural networks // J. Chem. Phys. 2018. V. 149, N 9. P. 104106. DOI: 10.1063/1.5037715.
21. Tolchenov R.N., Naumenko O., Zobov N.F., Shirin S.V., Polyansky O.L., Tennyson J., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Vandaele A.C. Water vapour line assignments in the 9250–26000 cm-1 frequency range // J. Mol. Spectrosc. 2005. V. 233, N 1. P. 68–76. DOI: 10.1016/j.jms.2005.05.015.
22. Voronin B.A., Naumenko O.V., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Tolchenov R.N., Vandaele A.C., Tennyson J. HDO absorption spectrum above 11500 cm-1: Assignment and dynamics // J. Mol. Spectrosc. 2007. V. 244. P. 87–101. DOI: 10.1016/j.jms.2007.03.008.
23. Lukashevskaya A.A., Kassi S., Campargue A., Perevalov V.I. High sensitivity cavity ring down spectroscopy of the 2n1 + 3n2 + n3 band of NO2 near 1.57 mm // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 200. P. 17–24. DOI: 10.1016/j.jqsrt.2017.05.017.
24. Lukashevskaya A.A., Kassi S., Campargue A., Perevalov V.I. High sensitivity cavity ring down spectroscopy of the 4n3 band of NO2 near 1.59 mm // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 302–307. DOI: 10.1016/j.jqsrt.2017.07.024.
25. URL: https://cloud.iao.ru/index.php/s/TrLNjTXnBzaFypH. Dostup po parolyu: Slon2025.