Vol. 38, issue 12, article # 13

Kleymionov V. V., Novikova E. V. Features of observing small space objects in ground-based optical telescopes using laser guide stars. // Optika Atmosfery i Okeana. 2025. V. 38. No. 12. P. 1049–1053. DOI: 10.15372/AOO20251213 [in Russian].
Copy the reference to clipboard

Abstract:

The primary challenge in observing small (inconspicuous) space objects with ground-based optical telescopes is the effect of the atmosphere on the passage of radiation from a small (inconspicuous) space object. This paper examines the specifics of long-exposure observations of small space objects by recording short-exposure images of a laser guide star and then summing them in the telescope's focal plane. Correlation analysis is used to investigate the relationship between random displacements of the observed laser guide star image and the predicted position of the small space object. It is shown that a sufficient condition for determining their relative positions is the ratio of the absolute values ​​of the energy centers of gravity of the images as two jointly correlated Gaussian random variables with a Cauchy probability density distribution. Calculation results for monostatic and bistatic laser guide star formation schemes are presented.

Keywords:

adaptive optics, atmospheric turbulence, laser guide star, monostatic and bistatic schemes, image jitter, cross-angle correlation coefficient

References:

1. Bol'basova L.A., Lukin V.P. Adaptivnaya korrektsiya atmosfernykh iskazhenii opticheskikh izobrazhenii na osnove iskusstvennogo opornogo istochnika. M.: Fizmatlit, 2012. 128 p.
2. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenii v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 314 p.
3. Bol'basova L.A., Lukin V.P. Vozmozhnosti adaptivnoi opticheskoi korrektsii naklonov volnovogo fronta pri ispol'zovanii signalov ot traditsionnoi i polikhromaticheskoi lazernykh opornykh zvezd // Optika atmosf. i okeana. 2022. V. 35, N 10. P. 871–877; Bolbasova L.A., Lukin V.P. Possibilities of adaptive optical correction of the global wavefront tilt using signals from traditional and polychromatic laser guide stars // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S165–S170. DOI: 10.1134/S1024856023010037.
4. Hippler S. Adaptive optics for extremely large telescopes // J. Astron. Instrument. 2019. V. 8, N 2. P. 1950001.
5. Xuezong Yang, Ondrej Kitzler, Spence D.J., Zhenxu Bai, Yan Feng, Mildren R.P. Diamond sodium guide star laser // Op. Lett. 2020. V. 45, iss. 7. P. 1898–1901.
6. Hardy J.W. Adaptive Optics for Astronomical Telescopes. N.-V.: Oxford University press, 1998. 437 p.
7. Lukin V.P. Atmosfernaya adaptivnaya optika. Novosibirsk: Nauka, 1986. 250 p.
8. Sviridov K.N. Tekhnologii dostizheniya vysokogo uglovogo razresheniya opticheskikh sistem atmosfernogo videniya. M.: Znanie, 2005. 452 p.
9. Kleimenov V.V., Novikova E.V. Analiz effektivnosti monostaticheskoi i bistaticheskoi skhem formirovaniya LOZ na osnove korrelyatsionnoi teorii // Optika atmosf. i okeana. 2023. V. 36, N 4. P. 331–336.
10. Kleimenov V.V., Novikova E.V. Algoritm korrektsii drozhaniya izobrazheniya zvezdy v nazemnom opticheskom teleskope s pomoshch'yu iskusstvennogo opornogo istochnika // Opt. zhurnal. 2024. V. 91, N 1. P. 25–32.
11. Fried D.L. Statistics of a geometric representation of wavefront distortion // J. Opt. Soc. Am. 1965. V. 55, N 11. P. 1427–1435.
12. Rigaut F. On practical aspects of laser guide star // C.R. Phys. 2005. V. 6, N 10. P. 1089–1098.
13. Foy R., Foy F.C. Laser guide star: Principle, cone effect and tilt measurement // Optics in Astrophysics. Dordreckt: Springer, 2006. P. 249–273.
14. Venttsel' E.S. Teoriya veroyatnosti. M.: Vyssh. shkola, 2006. 575 p.
15. Tikhonov V.I. Statisticheskaya radiotekhnika. 2-е izd., perepab. i dop. M.: Radio i связь, 1982.