Vol. 38, issue 12, article # 1
Copy the reference to clipboard
Abstract:
The article presents the results of a study of the problem of propagation regimes of narrow (millimeter) laser beams in a Kerr-nonlinear turbulent medium, which is a model of evolution of the light inhomogeneities generated at multiple filamentation of high-power laser pulses in the corresponding media. We used methods of diffraction beam tubes and diffraction beams in the theoretical study. It was found that there are three propagation regimes for laser beams with certain parameters in a turbulent medium: self-focusing with generation of a nonlinear focus (beam collapse), self-channeling over a limited distance, and turbulent propagation. An analytical relationship for the square of the beam's effective radius was derived, which is of interest for practical applications in nonlinear atmospheric optics.
Keywords:
laser radiation, self-focusing, self-channeling, Kerr-nonlinear medium, turbulence
Figures:
References:
1. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Opt. Lett. 1995. V. 20, N 1. P. 73–75. DOI: 10.1364/ol.20.000073.
2. Nibbering E.T.J., Curley P.F., Grillon G., Prade B.S., Franco M.A., Salin F., Mysyrowicz A. Conical emission from self-guided femtosecond pulses in air // Opt. Lett. 1996. V. 21, N 1. P. 62–64. DOI: 10.1364/ol.21.000062.
3. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2009. 605 p.
4. Daigle J.-F., Kosareva O., Panov N., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Opt. Commun. 2011. V. 284, N 14. P. 3601–3606. DOI: 10.1016/j.optcom.2011.03.077.
5. Méchain G., Couairon A., Andre Y.-B., D'Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization // Appl. Phys. B. 2004. V. 79. P. 379–382. DOI: 10.1007/s00340-004-1557-8.
6. Durand M., Houard A., Prade B., Mysyrowicz A., Durécu A., Moreau B., Fleury D., Vasseur O., Borchert H., Diener K., Schmitt R., Théberge F., Chateauneuf M., Daigle J., Dubois J. Kilometer range filamentation // Opt. Express. 2013. V. 21, N 22. P. 26836–26845. DOI: 10.1364/OE.21.026836.
7. Apeximov D.V., Geints Yu.E., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Minina O.V., Oshlakov V.K., Petrov A.V. Prostranstvennaya struktura femtosekundnogo lazernogo izlucheniya pri filamentatsii v vozdukhe // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 81–87. DOI: 10.15372/AOO20210201; Apeximov D.V., Geints Yu.E., Zemlyanov A.A., Iglakova A.N., Kabanov A.M., Kuchinskaya O.I., Matvienko G.G., Minina O.V., Oshlakov V.K., Petrov A.V. Spatial structure of femtosecond laser radiation during filamentation in air // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 174–179.
8. Chin S.L., Talebpour A., Yang J., Petit S., Kandidov V.P., Kosareva O.G., Tamarov M.P. Filamentation of femtosecond laser pulses in turbulent air // Appl. Phys. B. 2002. V. 74, N 1. P. 67–76. DOI: 10.1007/s003400100738.
9. Shlenov S.A., Kandidov V.P. Formirovanie puchka filamentov pri rasprostranenii femtosekundnogo lazernogo impul'sa v turbulentnoi atmosfere. Part 1. Metod // Optika atmosf. i okeana. 2004. V. 17, N 8. P. 630–636.
10. Shlenov S.A., Kandidov V.P. Formirovanie puchka filamentov pri rasprostranenii femtosekundnogo lazernogo impul'sa v turbulentnoi atmosfere. Part 2. Statisticheskie kharakteristiki // Optika atmosf. i okeana. 2004. V. 17, N 8. P. 637–641.
11. Shlenov S.A., Markov A.I. Control of filamentation of femtosecond laser pulses in a turbulent atmosphere // Quantum Electron. 2009. V. 39, N 7. P. 658–662. DOI: 10.1070/QE2009v039n07ABEH014116.
12 Penano J., Hafizi B., Ting A., Helle M. Theoretical and numerical investigation of filament onset distance in atmospheric turbulence // J. Opt. Soc. Am. B. 2014. V. 31, N 5. P. 963–971. DOI: 1364/JOSAB.31.000963.
13. Ackermann R., Méjean G., Kasparian J., Yu J., Salmon E., Wolf J.-P. Laser filaments generated and transmitted in highly turbulent air // Opt. Lett. 2006. V. 31, N 1. P. 86–88. DOI: 10.1364/OL.31.000086.
14. Eeltink D., Berti N., Marchiando N., Hermelin S., Gateau J., Brunetti M., Wolf J.P., Kasparian J. Triggering filamentation using turbulence // Phys. Rev. A. 2016. V. 94, N 3. P. 033806. DOI: 10.1103/PhysRevA.94.033806.
15. Penano J., Palastro J.P., Hafizi B., Helle M.H., DiComo G.P. Self-channeling of high-power laser pulses through strong atmospheric turbulence // Phys. Rev. A. 2017. V. 96, N 1. P. 013829. DOI: 10.1103/PhysRevA.96.013829.
16. Apeksimov D.V., Babushkin P.A., Zemlyanov A.A., Kabanov A.M., Kochetov D.I., Oshlakov V.K., Petrov A.V., Khoroshaeva E.E. Vliyanie turbulentnosti na formirovanie intensivnykh svetovykh kanalov pri rasprostranenii femtosekundnykh lazernykh impul'sov na 100-metrovoi vozdushnoi trasse // Optika atmosf. i okeana. 2023. V. 36, N 10. P. 811–817. DOI: 10.15372/AOO20231004; Apeksimov D.V., Babushkin P.A., Zemlyanov A.A., Kabanov A.M., Kochetov D.I., Oshlakov V.K., Petrov A.V., Khoroshaeva E.E. The effect of turbulence on generation of high-intensity light channels during femtosecond laser pulse propagation along a 100-meter air path // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 1–6. DOI: 10.1134/S102485602370001X.
17. Petrishchev V.A. O primenenii metoda momentov k nekotorym zadacham rasprostraneniya chastichno-kogerentnykh svetovykh puchkov // Izv. vuzov. Radiofiz. 1971. V. XIV, N 9. P. 1416–1426.
18. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1967. 548 p.
19. Dolin L.S. Uravneniya dlya korrelyatsionnykh funktsii volnovogo puchka v khaoticheski neodnorodnoi srede // Izv. vuzov. Radiofiz. 1968. V. 11, N 6. P. 840–849.
20. Feizulin Z.I., Kravtsov Yu.A. K voprosu o rasshirenii lazernogo puchka v turbulentnoi atmosfere // Izv. vuzov. Radiofiz. 1967. V. 10, N 1. P. 68–73.
21. Stotts L.B., Penano J.R., Tellez J.A, Schmidt J.D., Urick V.J. Engineering equations for the filamentation collapse distance in lossy, turbulent, nonlinear media // Opt. Express. 2019. V. 27, N 18. P. 25126–25141. DOI: 10.1364/OE.27.025126.
22. Zemlyanov A.A., Geints Yu.E., Minina O.V. Otsenki kharakteristik mnozhestvennoi filamentatsii femtosekundnykh lazernykh impul'sov v vozdukhe na osnove modeli odinochnoi filamentatsii // Optika atmosf. i okeana. 2019. V. 32, N 8. P. 601–608. DOI: 10.15372/AOO20190801; Zemlyanov A.A., Geints Yu.E., Minina O.V. Estimation of the characteristics of the domain of multiple filamentation of femtosecond laser pulses in air based on the single filamentation model // Atmos. Ocean. Opt. 2020. V. 33, N 2. P. 117–123. DOI: 10.1134/S1024856020020165.