Vol. 38, issue 11, article # 9

Tarasenkov M. V., Belov V. V., Shesterikova A. V. Estimation of the influence of disregarding the non-Lambertian Earth surface reflectance on the error in its reconstruction from satellite data. // Optika Atmosfery i Okeana. 2025. V. 38. No. 11. P. 939–946. DOI: 10.15372/AOO20251109 [in Russian].
Copy the reference to clipboard

Abstract:

To perform accurate atmospheric correction (elimination of the distorting influence of the atmosphere) of satellite images, it is crucial to consider various factors that influence the received signal, including the non-Lambertian surface reflectance (the difference between surface reflection and Lambert's law, according which radiation is equally reflected in all directions and depends only on the irradiance of the surface and the reflectance). High-quality satellite information is important for solving a wide range of problems in monitoring the ground surface, such as forest condition, agricultural productivity, and others. In some algorithms, non-Lambertian reflection is taken into account after solving the problem in the Lambertian reflection approximation. In this case, the assumption is used that the adjacency effect (received radiation reflected from areas of the ground surface adjacent to the observed one and scattered in the atmosphere) is formed only by surfaces with Lambertian reflection. The calculations performed show that at SM ≤ 6 km, neglect of non-Lambertian reflection produces an error in determining the reflectance of no higher than 20.3%, neglect of non-Lambertian reflection in the formation of adjacency effect and additional illumination results in an error of no more than 12%, and neglect of non-Lambertian reflection in additional illumination, of no more than 1.4%. For more clear situations (SM ≥ 6 km), the maximal error for similar models does not exceed 92, 14, and 1.2%, respectively. For solar zenith angles Θsun ≤ 60° and angles of the optical axis of the receiving system Θsun ≤ 60°, the errors do not exceed 30, 7.5, and 1%, respectively. The results prove the possibility of considering non-Lambertian reflection after taking into account adjacency effect and additional illumination of the ground surface in the Lambertian reflection approximation.

Keywords:

Monte Carlo method, non-lambertian surface, radiative transfer, ground surface reflectance

References:

1. Tanre D., Herman M., Deschamps P.Y., de Leffe A. Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties // Appl. Opt. 1979. V. 18, N 21. P. 3587–3594. DOI: 10.1364/AO.18.003587.
2. Sushkevich T.A., Mishin I.V. Amplitudnaya i fazovaya kharakteristiki rasseivayushchego sloya // Dokl. AN SSSR. 1982. V. 263, N 1. P. 60–63.
3. Mishin I.V. Issledovanie opticheskikh kharakteristik sistemy zemnaya poverkhnost' – atmosfera metodami teorii trekhmernogo perenosa: dis. … dokt. fiz.-mat. nauk (05.07.12). M.: MIIGAiK, 1998. 300 p.
4. Gastellu-Etchegorry J.-P., Demarez V., Pinel V., Zagolski F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies // Remote Sens. Environ. 1996. V. 58, N 2. P. 131–156. DOI: 10.1117/12.200743.
5. Martonchik J.V., Diner D.J., Kahn R.A., Ackerman T.P., Verstraete M.M., Pinty B., Gordon H.R. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging // IEEE Trans. Geosci. Remote Sens. 1998. V. 36, N 4. P. 1212–1227. DOI: 10.1109/36.701027.
6. Pinty B., Roveda F., Verstraete M., Gobron N., Govaerts Y., Martonchik J., Diner D., Kahn R. Surface albedo retrieval from Meteosat: 1. Theory // J. Geophys. Res. 2000. V. 105, N D14. P. 18,099–18,112. DOI: 10.1029/2000JD900113.
7. Lyapustin A., Martonchik J., Wang Y., Laszlo I., Korkin S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables // J. Geophys. Res. 2011. V. 116. P. D03210. DOI: 10.1029/2010JD014985.
8. Shi H., Xiao Z., Wen J., Wu S. An Optical–thermal surface–atmosphere radiative transfer model coupling framework with topographic effects // IEEE Trans. Geosci. Remote Sens. 2022. V. 60. P. 1–12. DOI: 10.1109/TGRS.2020.3044061.
9. Gao B., Jia L., Menenti M. An improved method for retrieving land surface albedo over rugged terrain // IEEE Geosci. Remote Sens. Lett. 2014. V. 11, N 2. P. 554–558. DOI: 10.1109/LGRS.2013.2275072.
10. Yin G., Ma L., Zhao W., Zeng Y., Xu B., Wu S. Topographic correction for Landsat 8 OLI vegetation reflectances through path length correction: A comparison between explicit and implicit methods // IEEE Trans. Geosci. Remote Sens. 2020. V. 58, N 12. P. 8477–8489. DOI: 10.1109/TGRS.2020.2987985.
11. Yin G., Li J., Xu B., Zeng Ye., Wu Sh., Yan K., Verger A., Liu G. PLC-C: An integrated method for Sentinel-2 topographic and angular normalization // IEEE Geosci. Remote Sens. Lett. 2021. V. 18, N 8. P. 1446–1450. DOI: 10.1109/LGRS.2020.3001905.
12. Roujean J.-L., Tanré D., Bréon F.-M., Deuzé J.-L. Retrieval of land surface parameters from airborne POLDER bidirectional reflectance distribution function during HAPEX-Sahel // J. Geophys. Res. 1997. V. 102, N D10. P. 11.201–11.218. DOI: ff10.1029/97JD00341.
13. Lucht W., Schaaf C.B., Strahler A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models // IEEE Trans. Geosci. Remote Sens. 2000. V. 38, N 2. P. 977–998. DOI: 10.1109/36.841980.
14. Bréon F.-M., Vermote E. Correction of MODIS surface reflectance time series for BRDF effects // Remote Sens. Environ. 2012. V. 125. P. 1–9. DOI: 10.1016/j.rse.2012.06.025.
15. Lyapustin A., Wang Y., Korkin S., Huang D. MODIS Collection 6 MAIAC algorithm // Atmos. Meas. Tech. 2018. V. 11. P. 5741–5765. DOI: 10.5194/amt-11-5741-2018.
16. Weyermann J., Kneubühler M., Schläpfer D., Schaepman M.E. Minimizing reflectance anisotropy effects in airborne spectroscopy data using Ross–Li model inversion with continuous field land cover stratification // IEEE Trans. Geosci. Remote Sens. 2015. V. 53, N 11. P. 5814–5823. DOI: 10.1109/TGRS.2015.2415872.
17. Fawcett D., Verhoef W., Schläpfer D., Schneider F.D., Schaepman M.E., Damm A. Advancing retrievals of surface reflectance and vegetation indices over forest ecosystems by combining imaging spectroscopy, digital object models, and 3D canopy modelling // Remote Sens. Environ. 2018. V. 204. P. 583–595. DOI: 10.1016/j.rse.2017.09.040.
18. Jia W., Pang Y., Tortini R., Schläpfer D., Li Z., Roujean J.-L. A Kernel-driven BRDF approach to correct airborne hyperspectral imagery over forested areas with rugged topography // Remote Sens. 2020. V. 12, N 3. P. 432. DOI: 10.3390/rs12030432.
19. Rahman H., Pinty B., Verstraete M.M. Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data // J. Geophys. Res. 1993. V. 98, N D11. P. 20.791–20.801. DOI: 10.1029/93JD02072.
20. Powers B.J., Gerstl S.A.W. Modeling of atmospheric effects on the angular distribution of a backscattering peak // IEEE Trans. Geosci. Remote Sens. 1988. V. 26, N 5. P. 649–659. DOI: 10.1109/36.7691.
21. Maignan F., Bréon F.-M., Lacaze R. Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot // Remote Sens. Environ. 2004. V. 90, N 2. P. 210–220. DOI: 10.1016/J.RSE. 2003.12.006.
22. Tanre D., Holben B.N., Kaufman Y.J. Atmospheric correction algorithm for NOAA-AVHRR products: Theory and application // IEEE Trans. Geosci. Remote Sens. 1992. V. 30, N 2. P. 231–248. DOI: 10.1109/36.134074.
23. Collings S., Caccetta P., Campbell N., Wu X. Techniques for BRDF correction of hyperspectral mosaics // IEEE Trans. Geosci. Remote Sens. 2010. V. 48, N 2. P. 3733–3746. DOI: 10.1109/TGRS.2010.2048574.
24. Jensen D.J., Simard M., Cavanaugh K.C., Thompson D.R. Imaging spectroscopy BRDF correction for mapping Louisiana’s coastal ecosystems // IEEE Trans. Geosci. Remote Sens. 2017. V. 56. P. 1739–1748. DOI: 10.1109/TGRS.2017.2767607.
25. Jiao Z., Dong Y., Schaaf C.B., Chen J.M., Román M., Wang Z., Zhang H., Ding A., Erb A., Hill M.J. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model // Remote Sens. Environ. 2018. V. 209. P. 594–611. DOI: 10.1016/j.rse.2018.02.041.
26. Wen J., Liu Q., Xiao Q., Liu Q., You D., Hao D., Wu S., Lin X. Characterizing land surface anisotropic reflectance over rugged terrain: A review of concepts and recent developments // Remote Sens. 2018. V. 10. P. 370. DOI: 10.3390/rs10030370.
27. Wu S., Wen J., Gastellu-Etchegorry J.-P., Liu Q., You D., Xiao Q., Hao D., Lin X., Yin T. The definition of remotely sensed reflectance quantities suitable for rugged terrain // Remote Sens. Environ. 2019. V. 225. P. 403–415. DOI: 10.1016/j.rse.2019.01.005.
28. Putsay M. A simple atmospheric correction method for the short wave satellite images // Int. J. Remote Sens. 1992. V. 13, N 8. P. 1549–1558. DOI: 10.1080/01431169208904208.
29. Vermote E.F., Vermeulen A. Atmospheric Correction algorithm: Spectral Reflectances (MOD09). Algorithm Theoretical Background Document. Version 4.0. 1999. URL: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf (last access: 30.01.2023).
30. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86-0177. ERP 1010. Hansom AFB. MA 01731. 1988. 137 p.
31. Белов В.В., Тарасенков М.В. Статистическое моделирование интенсивности световых потоков. отраженных сферической земной поверхностью // Оптика атмосф. и океана. 2010. Т. 23, № 1. С. 14–20; Belov V.V., Tarasenkov M.V. Statistical modeling of the intensity of light fluxes reflected by the Earth’s spherical surface // Atmos. Ocean. Opt. 2010. V. 23, N 3. P. 197–203.
32. Leroy M., Roujean J. Sun and view angle corrections on reflectances derived from NOAA/AVHRR data // IEEE Trans. Geosci. Remote Sens. 1994. V. 32, N 3. P. 684–697. DOI: 10.1109/36.297985.