Vol. 38, issue 11, article # 4
Copy the reference to clipboard
Abstract:
The main problem in solar energy is reducing optical losses due to light reflection from the surface of photovoltaic cells. This paper presents the results of a numerical study of antireflection properties of nanostructured silicon dioxide (SiO2) coatings deposited on the surface of a solar cell. Two types of porous antireflection coatings are considered: a multilayer assembly of nanospheres and vertical air nanopores embedded in a continuous silicon dioxide layer. The light transmission efficiency is assessed depending on the thickness and structural design of the antireflection coating. It is found that the efficiency of solar energy conversion into electricity can significantly vary across different spectral ranges for the same antireflection coating type. It is shown that a coating made of vertical nanopores in most cases provides more efficient conversion of incident light compared to a porous layer formed by an ordered microassembly of nanospheres. The results are important for the development of more efficient solar cells and can be used to create anti-reflective coatings to improve the overall performance of photovoltaic devices.
Keywords:
solar cell, nanostructured coating, optical loss, numerical simulation
Figures:
References:
1. Citek K. Anti-reflective coatings reflect ultraviolet radiation // Optometry. 2008. V. 79. P. 143–148. DOI: 10.1016/j.optm.2007.08.019.
2. Bailey S., Raffaelle R. Operation of solar cells in a space environment // Handbook of Photovoltaics / A. McEvoy, Т. Markvart, L. Castañer (eds.). Boston: Academic Press, 2017. P. 987–1003. DOI: 10.1016/B978-0-12-809921-6.00027-6.
3. Shanmugam N., Pugazhendhi R., Elavarasan R.M., Kasiviswanathan P., Das N. Anti-reflective coating materials: A holistic review from PV perspective // Energies. 2020. V. 13, N 10. P. 2631. DOI: 10.3390/en13102631.
4. Ji C., Liu W., Bao Y., Chen X., Yang G., Wei B., Yang F., Wang X. Recent applications of antireflection coatings in solar cells // Photonics. 2022. V. 9, N 12. P. 906. DOI: 10.3390/photonics9120906.
5. Luo Q., Deng X., Zhang C., Yu M., Zhou X., Wang Z., Chen X., Huang S. Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings // Solar Energy. 2018. V. 169. P. 128–135. DOI: 10.1016/j.solener.2018.04.044.
6. Su D., Lv L., Yang Y., Zhou H.-L., Iqbal S., Zhang T. Simple self-assembly strategy of nanospheres on 3D substrate and its application for enhanced textured silicon solar cell // Nanomaterials. 2021. V. 11, N 10. P. 2581. DOI: 10.3390/nano11102581.
7. Prevo B.G., Hwang Y., Velev O.D. Convective assembly of antireflective silica coatings with controlled thickness and refractive index // Chem. Mater. 2005. V. 17. P. 3642–3651. DOI: 10.1021/cm050416h.
8. Krogman K.C., Druffel T., Sunkara M.K. Anti-reflective optical coatings incorporating nanoparticles // Nanotechnology. 2005. V. 16, N 7. P. S338–S343. DOI: 10.1088/0957-4484/16/7/005.
9. Geints Y.E., Panina E.K. Boosting light absorption of a therapeutic microcapsule by means of auxiliary solid nanoparticles // Opt. Commun. 2023. V. 537. P. 129444. DOI: 10.1016/j.optcom.2023.129444.
10. Tamar Y., Tzabari M., Haspel C., Sasson Y. Estimation of the porosity and refractive index of sol–gel silica films using high resolution electron microscopy // Solar Energy Mater. Solar Cells. 2014. V. 30. P. 246–256. DOI: 10.1016/j.solmat.2014.07.020.
11. Katagiri K., Yamazaki S.-I., Inumaru K., Koumoto K. Anti-reflective coatings prepared via layer-by-layer assembly of mesoporous silica nanoparticles and polyelectrolytes // Polym. J. 2015. V. 47. P. 190–194. DOI: 10.1038/pj.2014.104.
12. Zhou Q., McIntosh D.C., Chen Y., Sun W., Li Z., Campbell J.C. Nanosphere natural lithography surface texturing as anti-reflective layer on SiC photodiodes // Opt. Express. 2011. V. 19. P. 23664–23670. DOI: 10.1364/OE.19.023664.
13. Niklasson G.A., Granqvist C.G., Hunderi O. Effective medium models for the optical properties of inhomogeneous materials // Appl. Opt. 1981. V. 20. P. 26–30. DOI: 10.1364/AO.20.000026.