Vol. 38, issue 10, article # 8
Copy the reference to clipboard
Abstract:
Characteristics of a convective cloud with heavy rainfall over Saint-Petersburg and Leningrad region on 1st of July, 2023, are considered. The analysis was based on data of the weather radar DMRL-C, weighing precipitation gauges Pluvio2 200, and two lightning detection networks. The appearance and development of Cb under study was a result of merging two convective clouds. During their development the clouds slowly converged moving towards Saint-Petersburg from the southwest. Measurements have shown that the cloud merging led to explosive growth of the cloud top, which reached an altitude of 13.4 km; significant increase in the maximal reflectivity up to 69 dBZ, in volume of the cloud supercooled part with high reflectivity, volumes of the cloud with graupel and hail, precipitation intensity up to 140 mm/h, and lightning rate. The appearance of “the cloud bridge” was recorded. It has been shown that it consisted of graupel and wet snow particles.
Keywords:
thunderstorm, lightning, radar characteristics, cloud merging
Figures:
References:
1. Bao X., Wu L., Zhang S., Li Q., Lin L., Zhao B., Wu D., Xia W., Xu B. Distinct raindrop size distributions of convective inner- and outer-rainband rain in Typhoon Maria (2018) // J. Geophys. Res.: Atmos. 2020. V. 125, N 14. e2020JD032482. DOI: 10.1029/2020JD032482.
2. Zhao D., Gao W., Xu H., Yu Yu., Chen L. A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China // Atmos. Res. 2022. V. 277. 106311. DOI: 10.1016/j.atmosres.2022.106311.
3. Sin’kevich A.A., Mikhailovskii Yu.P., Kurov A.B., Tarabukin I.A., Veremei N.E., Dmitrieva O.A., Torgunakov R.E., Toropova M.L. Kharakteristiki konvektivnykh oblakov Severo-Zapada Rossii, formiruyushchikh intensivnye osadki // Optika atmosf. i okeana. 2023. V. 36, N 8. С. 662–669. DOI: 10.15372/AOO20230806; Sin’kevich A.A., Mikhailovskii Yu.P., Kurov A.B., Tarabukin I.A., Veremei N.E., Dmitrieva O.A., Torgunakov R.E., Toropova M.L. Characteristics of convective clouds producing heavy precipitation in Northwest Russia // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. S33–S40.
4. Wang H., Yan Y., Long K., Chen Q., Fan X., Zhang F., Tan L. Relationships between rapid urbanization and extreme summer precipitation over the Sichuan–Chongqing area of China // Front. Earth Sci. 2022. V. 10. 909547. DOI: 10.3389/feart.2022.909547.
5. RD 52.88.699-2008. Polozhenie o poryadke dejstvij uchrezhdenij i organizatsij pri ugroze vozniknoveniya i vozniknovenii opasnykh prirodnykh yavlenij. M., 2008. 30 p.
6. Fasol'ko D.V., Akent'eva E.M., Klyueva M.V., Zadvornykh V.A. Analiz vliyaniya nablyudaemykh izmenenij klimata na funktsionirovanie sistem vodootvedeniya i vodoochistki Sankt-Peterburga // Trudy III Vseros. konf. «Gidrometeorologiya i ekologiya: dostizheniya i perspektivy razvitiya». SPb.: Khimizdat, 2019. P. 871–874.
7. Ren G., Sun Y., Sun H., Dong Y., Yang Y., Xiao H. A case study on two differential reflectivity columns in a convective cell: Phased-array radar observation and cloud model simulation // Remote Sens. 2024. V. 16, N 3. P. 460. DOI: 10.3390/rs16030460.
8. Sinkevich A.A., Krauss T.W. Changes in thunderstorm characteristics due to feeder cloud merging // Atmos. Res. 2014. V. 142. P. 124–132. DOI: 10.1016/j. atmosres.2013.06.007.
9. Fu D., Guo X. A cloud-resolving study on the role of cumulus merger in MCS with heavy precipitation // Adv. Atmos. Sci. 2006. V. 23, N 6. P. 857–868. DOI: 10.1007/s00376-006-0857-9.
10. Wiggert V., Lockett G.J., Ostlund S.S. Radar rainshower growth histories and variations with wind speed, echo motion, location and merger status // Mon. Weather. Rev. 1981. V. 109, N 7. P. 1467–1494. DOI: 10.1175/1520-0493(1981)109<1467:RRGHAV>2.0.CO;2.
11. Livshits E.M. Dinamika i kinematika konvektivnykh shtormov na elementakh mezo-β-masshtabnykh konvektivnykh struktur. M.: Grin Print, 2023. 324 p.
12. Kogan Y.L., Shapiro A. The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger // J. Atmos. Sci. 1996. V. 53, N 17. P. 2525–2545. DOI: 10.1175/1520-0469(1996)053<2525:TSOACC>2.0.CO;2.
13. Pavlyukov Yu.B., Korenev D.P., Travov A.V. Svidetel'stvo o gosudarstvennoj registratsii programmy dlya EVM N 2018665447 Rossijskaya Federatsiya. Programmnyj kompleks vtorichnoj obrabotki informatsii doplerovskogo meteorologicheskogo radiolokatora DMRL-S (shifr «GIMET-2010») versiya 02, N 2018662687, zayavl. 13.11.2018, opubl. 05.12.2018 / zayavitel' Federal'noe gosudarstvennoe byudzhetnoe uchrezhdenie «TSentral'naya aerologicheskaya observatoriya» (FGBU «TsAO»).
14. Sin’kevich A.A., Tarabukin I.A., Toropova M.L., Mikhailovskii Yu.P., Veremei N.E., Kurov A.B., Yusupov I.E., Bocharnikov N.V., Lalushkin A.S., Solonin A.S., Starykh D.S. Stroenie i kharakteristiki kuchevo-dozhdevogo oblaka vo vremya formirovaniya molnij // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 921–927. DOI: 10.15372/AOO20231107; Sin’kevich A.A., Tarabukin I.A., Toropova M.L., Mikhailovskii Yu.P., Veremei N.E., Kurov A.B., Yusupov I.E., Bocharnikov N.V., Lalushkin A.S., Solonin A.S., Starykh D.S. Structure and characteristics of a Сb during lightning // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 66–73.
15. Dolan B., Rutledge S.A., Lim S., Chandrasekar V., Thurai M. A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset // J. Appl. Meteorol. Climatol. 2013. V. 52, N 9. P. 2162–2186. DOI: 10.1175/JAMC-D-12-0275.1.
16. Stepanenko V.D. Radiolokatsiya v meteorologii. L.: Gidrometeoizdat, 1973. 343 p.
17. Matrosov S.Y. Evaluating polarimetric X-band radar rainfall estimators during HMT // J. Atmos. Ocean. Technol. 2010. V. 27, N 1. P. 122–134. DOI: 10.1175/2009JTECHA1318.1.
18. Saunders C.P.R., Peck S.L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions // J. Geophys. Res. 1998. V. 103, N D12. P. 13949–13956. DOI: 10.1029/97JD02644.
19. Sin'kevich A.A., Dovgalyuk Yu.A. Koronnyj razryad v oblakakh // Izv. vuzov. Radiofiz. 2013. V. 56, N 11, 12. P. 908–919.
20. Fehr T., Dotzek N., Höller H. Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms // Atmos. Res. 2005. V. 76, N 1–4. P. 167–189. DOI: 10.1016/j.atmosres.2004.11.027.
21. Pessi A.T., Businger S. Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean // J. Appl. Meteorol. Climatol. 2009. V. 48, N 4. P. 833–848. DOI: 10.1175/2008JAMC1817.1.