Vol. 38, issue 10, article # 7
Copy the reference to clipboard
Abstract:
Wind Doppler lidars have proven themselves as an effective means of evaluating wind turbulence in aircraft measurements. However, existing methods of sounding from aboard an aircraft assume the presence of a complex scanning system. In this work, we test possibility of evaluating turbulence parameters and wind convective flows using the second version of the lidar created in the Laboratory of Wave Propagation of IAO SB RAS during nadir sounding from aboard a flying aircraft. Based on the analysis of experimental data, we retrieved vertical profiles of estimates of vertical wind velocity (VWV) dispersion and turbulent kinetic energy dissipation rate up to altitudes of 1250–1600 m. During the analysis of sounding data near clouds, we recorded VWV shear according to one lidar signal spectrum, which contained two Doppler peaks. The results of this work can be useful in creating new methods for evaluating turbulence and wind shear.
Keywords:
pulsed coherent Doppler lidar, LRV-2, vertical wind velocity, turbulent dissipation rate
Figures:
References:
1. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63. P. 2700–2719. DOI: 10.1175/JAS3776.1.
2. O’Connor E.J., Illingworth A.J., Brooks I.M., West-brook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664. DOI: 10.1175/2010JTECHA1455.1.
3. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3147–3167. DOI: 10.5194/amt-6-3147-2013.
4. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8. P. 729–740. DOI: 10.5194/amt-8-729-2015.
5. Newman J.F., Klein P.M., Wharton S., Sathe A., Bonin T.A., Chilson P.B., Muschinski A. Evaluation of three lidar scanning strategies for turbulence measurements // Atmos. Meas. Tech. 2016. V. 9. P. 1993–2013. DOI: 10.5194/amt-9-1993-2016.
6. Bonin T.A., Choukulkar A., Brewer W.A., Sandberg S.P., Weickmann A.M., Pichugina Y., Banta R.M., Oncley S.P., Wolfe D.E. Evaluation of turbulence measurement techniques from a single Doppler lidar // Atmos. Meas. Tech. 2017. V. 10. P. 3021–3039. DOI: 10.5194/amt-2017-35.
7. Bodini N., Lundquist J.K., Newsom R.K. Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign // Atmos. Meas. Tech. 2018. V. 11. P. 4291–4308. DOI: 10.5194/amt-11-4291-2018.
8. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13, N 11. AN 2071. DOI: 10.3390/rs13112071.
9. Weissmann M., Busen R., Dörnbrack A., Rahm S., Reitebuch O. Targeted observations with an airborne wind lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1706–1719. DOI: 10.1175/JTECH1801.1.
10. Zhang X., Lin Z., Gao Ch., Han Ch., Fan L., Zhao X. Evaluation and wind field detection of airborne doppler wind lidar with automatic intelligent processing in North China // Atmosphere. 2024. V. 15, N 5. P. 536. DOI: 10.3390/atmos15050536.
11. Emmitt S.G., Zhang S.Q. Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX) // Atmos. Meas. Tech. 2020. V. 13, N 8. P. 4521–4537. DOI: 10.5194/amt-13-4521-2020.
12. Gasch P., Kasic J., Maas O., Wang Z. Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow–an LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems // Atmos. Meas. Tech. 2023. V. 16, N 22. P. 5495–5523. DOI: 10.5194/amt-16-5495-2023.
13. Sherstobitov A.M., Banakh V.A., Smalikho I.N., Falits A.V. Testirovanie optovolokonnogo impul'snogo kogerentnogo doplerovskogo lidara LRV-2 // Optika atmosf. i okeana. 2025. V. 38, N 7. P. 541–550. DOI: 10.15372/AOO20250705.
14. Elektronnyi resurs URL: https://iao.ru/ru/structure/juc/plane/equip (data obrashcheniya: 16.10.2024).
15. Banakh V.A., Smalikho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoi atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
16. Frehlich R. Effects of wind turbulence on coherent Doppler lidar performance // J. Atmos. Ocean. Technol. 1997. V. 14, N 1. P. 54–75. DOI: 10.1175/1520-0426(1997)014<0054:EOWTOC>2.0.CO;2.