Vol. 38, issue 10, article # 6
Copy the reference to clipboard
Abstract:
Bio-optical parameters of seas of the Far East region obtained from the MODIS/AQUA radiometer data are analyzed. The results of two main atmospheric correction algorithms based on the following assumptions are compared: the absence of water-leaving radiance in the near-infrared spectral bands and the stability of the sea water spectral shape in this range (MUMM). Verification was carried out using data of Japanese and Korean AERONET-OC stations. An approach to improving the results of MUMM atmospheric correction by using a regional adjustment of the color indices is considered. The MUMM correction after adjustment is not inferior to NIR correction in terms of the calculation accuracy of chlorophyll-a concentration. It was found that the recommended NIR correction leads to negative reflectivity coefficients Rrs at a wavelength of 412 nm in 10% of cases. These cases correspond to highly trophic waters and are accompanied by an overestimation of the chlorophyll-a concentration by an average of 1.8 times. The proposed correction of the color indices does not lead to negative values of Rrs; the color indices in the blue spectral range have significantly lower errors than those of the NIR algorithm. The proposed approach ensures more reliable estimates of bio-optical parameters of the sea based on satellite data.
Keywords:
ocean color indices, atmospheric correction, MUMM algorithm, MODIS/AQUA, AERONET-OC, chlorophyll a concentration
Figures:
References:
1. Gordon H.R., Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm // Appl. Opt. 1994. V. 33, N 33. P. 443–452. DOI: 10.1364/AO.33.000443.
2. Ruddick K.G., Ovido F., Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters // Appl. Opt. 2000. V. 39. P. 897–912. DOI: 10.1364/AO.39.000897.
3. Ruddick K.G., Cauwer V.D., Park Y.-J. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters // Limnol. Oceonogr. 2006. V. 51. P. 1167–1179. DOI: 10.4319/lo.2006.51.2.1167.
4. Wang M. Remote sensing of ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations // Appl. Opt. 2007. V. 46. P. 1535–1547. DOI: 10.1364/AO.46.001535.
5. Wang M., Shi W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing // Opt. Express. 2007. V. 15. P. 15722–15733. DOI: 10.1364/OE.15.015722.
6. Goyens C., Jamet C., Ruddick K.G. Spectral relationships for atmospheric correction. II. Improving NASA’s standard and MUMM near infra-red modeling schemes // Opt. Express. 2013. V. 21, N 18. P. 21176–21187. DOI: 10.1364/OE.21.021176.
7. Jiang L., Wang M. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing // Opt. Express. 2014. V. 22. P. 21657–21678. DOI: 10.1364/OE.22.021657.
8. Schroeder T., Behnert I., Schaale M., Fischer J., Doerffer R. Atmospheric correction algorithm for MERIS above case-II waters // Int. J. Remote Sens. 2007. V. 28. P. 1469–1486. DOI: 10.1080/01431160600962574.
9. Fan Y., Li W., Gatebe C.K., Jamet C., Zibordi G., Schroeder T., Stamnes K. Atmospheric correction over coastal waters using multilayer neural networks // Remote Sens. Environ. 2017. V. 199. P. 218–240. DOI: 10.1016/j.rse.2017.07.016.
10. Palmer S.C.J., Kutser T., Hunter P.D. Remote sensing of inland waters: Challenges, progress and future directions // Remote Sens. Environ. 2015. V. 157. P. 1–8. DOI: 10.1016/j.rse.2014.09.021.
11. IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Color Products / M. Wang (ed.). Dartmouth, Canada: International Ocean-Color Coordinating Group, 2010. N 10. P. 1–78. DOI: 10.25607/OBP-101.
12. Emberton S., Chittka L., Cavallaro A., Wang M. Sensor capability and atmospheric correction in ocean colour remote sensing // Remote Sens. 2016. V. 8, N 1. DOI: 10.3390/rs8010001.
13. Goyens C., Jamet C., Schroeder T. Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters // Remote Sens. Environ. 2013. V. 131. P. 63–75. DOI: 10.1016/j.rse.2012.12.006.
14. Jamet C., Loisel H., Kuchinke C.P., Ruddick K., Zibordi G., Feng H. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements // Remote Sens. Environ. 2011. V. 115. P. 1955–1965. DOI: 10.1016/j.rse.2011.03.018.
15. Lee B., Ahn J.H., Park Y.-J., Kim S.-W. Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm // Korean J. Remote Sens. 2013. V. 29, N 2. P. 173–182. DOI: 10.7780/kjrs.2013.29.2.2.
16. Kravchishina M.D., Burenkov V.I., Kopelevich O.V., Sheberstov S.V., Vazyulya S.V., Lisitsyn A.P. Novye dannye o prostranstvenno-vremennoi izmenchivosti kontsentratsii chlorofilla-a v Belom more // Dokl. RAN. 2013. V. 448, N 3. P. 342–348. DOI: 10.7868/S0869565213030195.
17. Kopelevich O.V., Burenkov V.I., Sheberstov S.V. Razrabotka i ispol'zovanie regional'nykh algoritmov dlya rascheta bioopticheskikh kharakteristik morei Rossii po dannym sputnikovykh skanerov tsveta // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2006. V. 2. P. 99–105.
18. Korchemkina E.N., Raikina A.O. Istochniki pogreshnosti sputnikovykh dannykh v vesennii period v Chernom more // Ekologicheskaya bezopasnost' pribrezhnoi i shel'fovoi zon morya. 2022. N 4. P. 39–51. DOI: 10.22449/2413-5577-2022-4-39-51.
19. Aleksanin A.I., Kachur V.A. Osobennosti atmosfernoi korrektsii sputnikovykh dannykh tsveta okeana v Dal'nevostochnom regione // Issledovanie Zemli iz kosmosa. 2016. N 6, P. 56–67. DOI: 10.7868/ S020596141605002X.
20. Skorokhod E.Yu., Efimova T.V., Moiseeva N.A., Zemlyanskaya E.A., Churilova T.Ya. Sravnenie znachenii kontsentratsii khlorofilla-a, vosstanovlennykh po dannym spektroradiometra MODIS-AQUA, s rezul'tatami izmerenii v pribrezhnykh vodakh Chernogo morya v raione Sevastopolya // Morskoi biologich. zhurn. 2019. V. 4, N 4. P. 53–61. DOI: 10.21072/mbj.2019.04.4.05.
21. Skorokhod E.Yu., Churilova T.Ya., Efimova T.V., Moiseeva N.A. Suslin V.V. Bioopticheskie kharakteristiki pribrezhnykh vod CHernogo morya vblizi Sevastopolya: otsenka tochnosti sputnikovykh produktov, vosstanovlennykh po dannym MODIS i VIIRS // Morskoi gidrofizicheskii zhurn. 2021. V. 37, N 2. P. 233–246. DOI: 10.22449/0233-7584-2021-2-233-246.
22. Rybakova I.V., Kopelevich O.V., Burenkov V.I., Sheberstov S.V., Vazyulya S.V. Verifikatsiya sputnikovykh bioopticheskikh algoritmov dlya Kaspiiskogo morya po sudovym dannym // Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa. 2012. V. 9, N 4. P. 202–209.
23. Korchemkina E.N., Kalinskaya D.V. Algorithm of additional correction of level 2 remote sensing reflectance data using modelling of the optical properties of the Black sea waters // Remote Sens. 2022. V. 14, N 44. P. 831. DOI: 10.3390/rs14040831.
24. Yang M.M., Ishizaka J., Goes J.I., Gomes H.D.R., Maúre E.D.R., Hayashi M., Katano T., Fujii N., Saitoh K., Mine T., Yamashita H., Fujii N., Mizuno A. Improved MODIS-Aqua chlorophyll-a retrievals in the turbid semi-enclosed Ariake Bay, Japan // Remote Sens. 2018. V. 10, N 9. P. 1–20. DOI: 10.3390/rs10091335.
25. Ishizaka J., Yang M., Fujii N., Katano T., Hori M., Mine T., Saitoh K., Murakami H. Use of AERONET OC for validation of SGLI/GCOM C products in Ariake Sea, Japan // J. Oceanogr. 2022. V. 78. P. 291–309. DOI: 10.1007/s10872-022-00642-9.
26. Carder K.L., Chen F.R., Lee Z.P., Hawes S.K., Cannizzaro J.P. MODIS Ocean Science Team Algorithm Theoretical Basis Document. ATBD 19, Case 2 Chlorophyll a, version 7. 2003. 67 p. URL: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod19.pdf (accessed: 14.01.2025).
27. Morozov E., Korosov A., Pozdnyakov D., Pettersson L., Sychev V. A new area-specific bio-optical algorithm for the Bay of Biscay and assessment of its potential for SeaWiFS and MODIS/Aqua data merging // Int. J. Remote Sens. 2010. V. 31. P. 6541–6565. DOI: 10.1080/01431161.2010.508802.
28. Churilova T., Skorokhod E., Suslin V., Moiseeva N., Efimova T., Buchelnikov A. Assessment of the accuracy of Sentinel-3 OLCI L2 products retrieved by standard and regional algorithms for ecological monitoring of the Black Sea coastal and shelf waters // Regional Stud. Marine Sci. 2024. V. 79, N 103847. DOI: 10.1016/j.rsma.2024.103847.
29. Suslin V.B., Churilova T.Ya., Li M.E., Moncheva S., Finenko Z.Z. Kontsentratsiya chlorofilla-a v CHernom more: sravnenie sputnikovykh algoritmov // Fundam. i prikl. gidrofiz. 2018. V. 11, N 3. P. 64–72. DOI: 10.7868/S2073667318030085.
30. Siswanto E., Tang J., Yamaguchi H., Ahn Y.-H., Ishizaka J., Yoo S., Kim S.-W., Kiyomoto Yo., Yamada K., Chiang C., Kawamura H. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas // J. Oceanogr. 2011. V. 67. P. 627–650. DOI: 10.1007/s10872-011-0062-z.
31. Salyuk P., Bukin O., Alexanin A., Pavlov A., Mayor A., Shmirko K., Akmaykin D., Krikun V. Optical properties of Peter the Great Bay waters compared with satellite ocean colour data // Int. J. Remote Sens. 2010. V. 31, N 17–18. P. 4651–4664. DOI: 10.1080/01431161.2010.485219.
32. Salyuk P.A., Stepochkin I.E., Sokolova E.B., Pugach S.P., Kachur V.A., Pipko I.I. Regional empirical bio-optical algorithms for the western part of the Bering Sea in the late summer season // Remote Sens. 2022. V. 14, N 5797. DOI: 10.3390/rs14225797.
33. Zibordi G., Holben B., Hooker S.B., Mélin F., Berthon J.-F., Slutsker I., Giles D., Vandemark D., Feng H., Rutledge K., Schuster G., Mandoos A.A. A network for standardized ocean color validation measurements // Eos. Trans. Am. Geophys. Union. 2006. V. 87, N 30. P. 293–297. DOI: 10.1029/2006EO300001.
34. Bailey S.W., Franz B.A., Werdell P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing // Opt. Express. 2010. V. 18. P. 7521–7527. DOI: 10.1364/OE.18.007521.
35. Mobley C.D., Werdell J., Franz B., Ahmad Z., Bailey S. Atmospheric correction for satellite ocean color radiometry // NASA/TM–2016-217551. 2016. No. GSFC-E-DAA-TN35509. 73 p. DOI: 10.13140/RG.2.2.23016.78081.