Vol. 38, issue 10, article # 12
Copy the reference to clipboard
Abstract:
In atmospheric remote sensing, particularly in the interpretation of lidar signals from cirrus clouds, the accuracy of light scattering modeling on non-spherical randomly oriented ice particles plays a crucial role. Although the physical optics approximation is commonly used due to its computational efficiency, it does not always provide sufficient accuracy, especially when particle sizes are comparable to the wavelength of incident radiation. This introduces systematic errors into scattering matrix databases used for solving inverse problems. This study employs the discrete dipole approximation to verify the validity of the physical optics approximation. The primary focus is on comparing results obtained at wavelengths of 0.532 and 1.064 mm for particles of various shapes and sizes from 2 to 8 wavelengths. It is shown that in this size range, the physical optics approximation leads to relative errors of up to 20% in the linear depolarization ratio and reduces the backscattering intensity by half. The findings enable a more precise estimation of the applicability limits of the physical optics approximation and provide corrections for existing scattering matrix databases. This, in turn, will improve the accuracy of lidar data interpretation and enhance the quality of microphysical retrievals for cirrus clouds.
Keywords:
light scattering, physical optics approximation, method of discrete dipole, atmospheric ice crystals, cirrus clouds
Figures:
References:
1. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Weather Rev. 1986. V. 114, N 6. P. 1167–1199. DOI: 10.1175/1520-0493(1986)114%3C1167:IOCCOW%3E2.0.CO;2.
2. Stephens G.L., Tsay S.-C., Stackhouse Jr.P.W., Flatau P.J. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback // J. Atmos. Sci. 1990. V. 47, 14. P. 1742–1754. DOI: 10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.
3. Winker D.M., Couch R.H., McCormick M.P. An overview of LITE: NASA's Lidar-in-space Technology Experiment // Proc. IEEE. 1996. V. 84. P. 164–180. DOI: 10.1109/5.482227.
4. Balin Yu.S., Tikhomirov A.A. Istoriya sozdaniya i raboty v sostave orbital'noj stantsii «Mir» pervogo rossijskogo kosmicheskogo lidara BALKAN // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1078–1087.
5. Winker D., Hunt W., Weimer C. The on-orbit performance of the CALIOP LIDAR on CALIPSO // Proc. SPIE. 2017. V. 10566–105661H. DOI: 10.1117/12.2308248.
6. Morançais D., Fabre F., Schillinger M., Barthès J.C., Endemann M., Culoma A., Durand Y. ALADIN: The first European lidar in space // Proc. SPIE. 2017. V. 10568–1056802. DOI: 10.1557/PROC-883-FF7.2.
7. Pauly R.M., Yorks J.E., Hlavka D.L., McGill M.J., Amiridis V., Palm S.P., Rodier S.D., Vaughan M.A., Selmer P.A., Kupchock A.W., Baars H., Gialitaki A. Cloud-Aerosol Transport System (CATS) 1064 nm calibration validation // Atmos. Meas. Tech. 2019. V. 12(11). P. 6241–6258. DOI: 10.5194/amt-12-6241-2019.
8. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission – science and system overview // Atmos. Meas. Tech. 2023. V. 16. P. 3581–3608. DOI: 10.5194/egusphere-2022-1476.
9. Mie G. Beitrage Zur Optik Trüber Medien, Speziell Kolloidaler Metallosungen // Ann. Phys. 1908. V. 330. P. 377–445. DOI: 10.1002/andp.19083300302.
10. Konoshonkin A.V., Kustova N.V., Shishko V.A., Timofeev D.N., Tkachev I.V., Bakute E., Babinovich A.E., Zhu X., Wang Z. Opticheskaya model' peristogo oblaka, sostoyashchego iz polykh ledyanykh geksagonal'nykh stolbikov, dlya zadach lazernogo zondirovaniya // Optika atmosf. i okeana. 2024. V. 37, N 9. P. 785–793. DOI: 10.15372/AOO20240909; Konoshonkin A.V., Kustova N.V., Shishko V.A., Timofeev D.N., Tkachev I.V., Bakute E., Babinovich A.E., Zhu X., Wang Z. Optical model of a cirrus cloud consisting of hollow ice hexagonal columns for lidar applications // Atmos. Ocean. Opt. 2024. V. 37, N 6. P. 896–904.
11. Wandinger U., Müller D., Böckmann C., Althausen D., Matthias V., Bösenberg J., Weiß V., Fiebig M., Wendisch M., Stohl A., Ansmann A. Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements // J. Geophys. Res.: Atmos. Am. Geophys. Union. D. 2002. V. 107, N 21. P. LAC7-1–20. DOI: 10.1029/2000JD000202.
12. Borovoi A.G., Grishin I.A. Scattering matrices for large ice crystal particles // J. Opt. Soc. Am. A. 2003. V. 20, N 11. P. 2071–2080. DOI: 10.1364/JOSAA.20.002071.
13. Bank dannykh matrits obratnogo rasseyaniya sveta. URL: https://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/Data_bank_2023_level_2 (data obrashcheniya: 22.04.2025).
14. Kunz K.S., Luebbers R.J. The Finite Difference Time Domain Method for Electromagnetics // CRC Press. 1993. 464 p. DOI: 10.1201/9780203736708.
15. Wang X., Bi L., Han W., Zhang X. Single-scattering properties of encapsulated fractal black carbon particles computed using the invariant imbedding T-matrix method and deep learning approaches // JGR Atmos. 2023. V. 128. P. 21. DOI: 10.1029/2023JD039568.
16. Draine B.T., Flatau P.J. Discrete-dipole approximation for scattering calculations // J. Opt. Soc. Am. A. 1994. V. 11, N 4. P. 1491–1499. DOI: 10.1364/JOSAA.11.001491.
17. Yurkin M.A., Hoekstra A.G. The discrete-dipole approximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2234–2247. DOI: 10.1016/j.jqsrt.2011.01.031.
18. Konoshonkin A.V., Kustova N.V., Borovoi A.G.. Algoritm trassirovki puchkov dlya zadachi rasseyaniya sveta na atmosfernykh ledyanykh kristallakh. Part 1. Teoreticheskie osnovy algoritma // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 441–447; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 441–447.
19. Ballington H., Hesse E. A light scattering model for large particles with surface roughness // J. Quant. Spectroscop. Radiat. Transfer. 2024. V. 323. P. 109054. DOI: 10.1016/j.jqsrt.2024.109054.
20. Popov A.A. O kogerentnom slozhenii rasseyannogo i difraktsionnogo polej v zadachakh svetorasseyaniya na krupnykh kristallakh // Dokl. AH SSSR. 1988. V. 303, N 3. P. 594–597.
21. Popov A.A., Sheffer O.V. Teoreticheskoe issledovanie pogloshcheniya opticheskogo izlucheniya orientirovannymi ledyanymi plastinkami v IK-diapazone // Optika atmosf. i okeana. 1994. V. 7, N 1. P. 18–23.
22. Borovoj A.G., Popov A.A., Sheffer O.V. Teoreticheskoe issledovanie opticheskogo izlucheniya dlya sistemy orientirovannykh ledyanykh plastinok // Optika atmosf. i okeana. 1991. V. 4, N 9. P. 899–906.
23. Bi L., Yang P., Kattateav G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectroscop. Radiat. Transfer. 2011. V. 112. P. 1492–1508. DOI: 10.1016/j.jqsrt.2011.02.015.
24. Yang P., Liou K.N. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35, N 33. P. 6568–6584. DOI: 10.1364/AO.35.006568.
25. Born M., Wolf E. Principles of Optics. Pergamon Press, 1970. 808 p.
26. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Granitsa primenimosti priblizheniya geometricheskoj optiki dlya resheniya zadachi obratnogo rasseyaniya sveta na kvazigorizontal'no orientirovannykh geksagonal'nykh ledyanykh plastinkakh // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 705–712; Konoshonkin A.V., Kustova N.V., Borovoi A.G. Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 74–81.
27. Konoshonkin A.V., Kustova N.V., Borovoj A.G., Shishko V.A., Grin'ko E. Reshenie zadachi rasseyaniya sveta na geksagonal'noj ledyanoj plastinke metodami Galerkina, diskretnykh dipolej i fizicheskoj optiki // Izv. vuzov. Fiz. 2016. V. 59, N 12–2. P. 156–159.
28. Timofeev D.N., Konoshonkin A.V., Kustova N.V. Algoritm Modified Beam-Splitting 1 (MBS-1) dlya resheniya zadachi rasseyaniya sveta na nevypuklykh ledyanykh atmosfernykh chastitsakh // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 473–480. DOI: 10.15372/AOO20180609; Timofeev D.N., Konoshonkin A.V., Kustova N.V. Modified Beam-Splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 642–649.
29. Draine B.T., Goodman J.J. Beyond Clausius–Mossotti: Wave propagation on a polarizable point lattice and the discrete dipole approximation // Astrophys. J. 1993. V. 405. P. 685–697. DOI: 10.1086/172396.
30. Freund R.W., Nachtigal N.M. An implementation of the QMR method based on coupled 2-term recurrences // SIAM J. Sci. Comput. 1994. V. 15. P. 313–337. DOI: 10.1137/0915022.
31. Schuh R. Arbitrary particle shape modeling in DDSCAT and validation of simulation results in T. Wriedt & A.G. Hoekstra // Proc. DDA – Workshop. Bremen: Institut fur Werkstofftechnik, 2007. P. 22–24.
32. Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. Metodika resheniya zadachi rasseyaniya sveta na ledyanykh kristallakh peristykh oblakov v napravlenii rasseyaniya nazad metodom fizicheskoj optiki dlya lidara s zenitnym skanirovaniem // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 40–50. DOI: 10.15372/AOO20160105; Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoi A.G. The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 252–262.
33. Shishko V.A., Konoshonkin A.V., Kustova N.V., Timofeev D.N. Rasseyanie sveta na sfericheskikh chastitsakh dlya prikladnykh zadach lidarnogo zondirovaniya // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 522–528. DOI: 10.15372/AOO20200704.
34. Ping Y., Lie B., Bryan A.B., Kattawar G.W., Mishenko M.I., Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 mm // J. Atmos. Sci. 2013. V. 70, N 1. P. 330–347. DOI: 10.1175/JAS-D-12-039.1.
35. Saito M., Yang P. Advanced bulk optical models linking the backscattering and microphysical properties of mineral dust aerosol // J. Geophys. Res. Lett. 2021. V. 48, N 17. P. e2021GL095121. DOI: 10.1029/2021GL095121.