Vol. 38, issue 10, article # 1

Rytchkov D. S. Evaluation of a possibility of measuring the topological charge of a vortex beam along an atmospheric path with a Shack–Hartmann sensor. // Optika Atmosfery i Okeana. 2025. V. 38. No. 10. P. 781–787. DOI: 10.15372/AOO20251001 [in Russian].
Copy the reference to clipboard

Abstract:

Due to degradation of laser beam properties on atmospheric paths, the maximum length of communication lines is limited. In this regard, it is of interest to evaluate the possibility of detecting the topological charge of a vortex beam disturbed by atmospheric fluctuations using wave front sensors. The problem of measuring the wavefront tilts of a vortex laser beam propagating along a path in a turbulent atmosphere by a Shack–Hartmann sensor is considered. Estimates are obtained for the change in the angles of local tilts of wavefront associated with the solenoidal component of the Poynting vector and the influence of turbulent fluctuations of the refractive index of the atmosphere. Using several specific models of the Shack–Hartmann sensor as an example, the possibility of calculating the value of the topological charge of a vortex Laguerre–Gaussian beam from the measured angles of local wavefront tilts is investigated.

Keywords:

optical vortex, turbulent atmosphere, wavefront, mutual coherence function, Poynting’s vector, optical communication

References:

1. Krenn M., Fickler R., Fink M., Handsteiner J., Malik M., Scheidl T., Ursin R., Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna // New J. Phys. 2014. V. 16. DOI: 10.1088/1367-2630/16/11/113028.
2. Wang J. Advances in communications using optical vortices // Photon. Res. 2016. V. 4, N 5. P. B14–B28. DOI: 10.1364/prj.4.000b14.
3. Pandey A.K., Larrieu T., Dovillaire G., Kazamias S., Guilbaud O. Shack–Hartmann wavefront sensing of ultrashort optical vortices // Sensors. 2022. V. 22. P. 132. DOI: 10.3390/s22010132.
4. Yang T., Xu Y., Tian H., Die D., Du Q., Zhang B., Dan Y. Propagation of partially coherent Laguerre Gaussian beams through inhomogeneous turbulent atmosphere // J. Opt. Soc. Am. A. 2017. V. 34. P. 713–720. DOI: 10.1364/JOSAA.34.000713.
5. Xu Y., Li Y., Zhao X. Intensity and effective beam width of partially coherent Laguerre–Gaussian beams through a turbulent atmosphere // J. Opt. Soc. Am. A. 2015. V. 32. P. 1623–1630. DOI: 10.1364/JOSAA.32.001623.
6. Luo J., Huang H., Matsui Y., Toyoda H., Inoue T., Bai J. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor // Opt. Express. 2015. V. 23. P. 8706–8719. DOI: 10.1364/OE.23.008706.
7. Huang C., Huang H., Toyoda H., Inoue T., Liu H. Correlation matching method for high-precision position detection of optical vortex using Shack–Hartmann wavefront sensor // Opt. Express. 2012. V. 20. P. 26099–26109. DOI: 10.1364/OE.20.026099.
8. Wang D., Huang H., Matsui Y., Tanaka H., Toyoda H., Inoue T., Liu H. Aberration-resistible topological charge determination of annular-shaped optical vortex beams using Shack–Hartmann wavefront sensor // Opt. Express. 2019. V. 27. P. 7803–7821. DOI: 10.1364/OE.27.007803.
9. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photon. 2015. V. 7. P. 66–106. DOI: 10.1364/AOP.7.000066.
10. Watkins R.J., Dai K., White G., Li W., Miller J.K., Morgan K.S., Johnson E.G. Experimental probing of turbulence using a continuous spectrum of asymmetric OAM beams // Opt. Express. 2020. V. 28. P. 924–935. DOI: 10.1364/OE.380405.
11. Bogach E.A., Adamov E.V., Dudorov V.V., Kolosov V.V. Raspoznavanie protivopolozhnykh po znaku orbital'nykh uglovykh momentov vikhrevykh puchkov v turbulentnoi atmosfere s pomoshch'yu neironnykh setei // Optika atmosf. i okeana. 2025. V. 38, N 4. P. 247–254. DOI: 10.15372/AOO20250401.
12. Kotlyar V.V., Kovalev A.A. Topologicheskii zaryad opticheskikh vikhrei. Samara: Novaya tekhnika, 2021. 180 p.
13. Born M., Vol'f E. Osnovy optiki. M.: Nauka, 1973. 720 p.
14. Marakasov D.A., Rychkov D.S. Otsenka izmeneniya effektivnogo radiusa metodom linii toka dlya osesimmetrichnykh lazernykh puchkov v turbulentnoi atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 317–322. DOI: 10.15372/AOO20160409; Marakasov D.A., Rychkov D.S. Estimate of the change in the effective beam width by the streamline method for axisymmetric laser beams in a turbulent atmosphere // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 447–451.
15. Andrews L.C., Philips R.L. Laser beam propagation through random media // SPIE Press. 2005. 782 p. DOI: 10.1117/3.626196.