Vol. 38, issue 09, article # 2
Copy the reference to clipboard
Abstract:
Determination of the spectrum structure, i.e., finding the empirical energy levels of molecules, is a relevant and important task of spectroscopy. For deuterated hydroxyl (OD), such information is absent in known spectroscopic databases. Therefore, empirical energy levels of 16OD were determined in this work. For the first time, the critical analysis of 3138 available experimental frequencies of rotational and vibrational-rotational transitions of 16OD molecule in X2П ground electronic state was performed using the Ritz combination principle. Transitions with hyperfine splitting were not considered. The transition frequencies weighted in accordance with the experimental errors were processed by the RITZ program code. The analysis of the dimensionless weighted deviations enabled us to exclude from the consideration those frequencies for which the weighted deviation exceeded four. The resulting set of 2984 transition frequencies made possible processing with a standard deviation of 1.24. As a result of critical evaluation, a set of 864 empirical RITZ energy levels was obtained with an appropriate uncertainty for each level. The found empirical RITZ energy levels were compared with those calculated in [15].
Keywords:
measured transition frequencies, 16OD molecule, X2Π electronic state, principle Ritz
References:
1. Belan B.D. Troposfernyi ozon. 6. Komponenty ozonovykh tsiklov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 358–380.
2. Prinn R.G., Huang J., Weiss R.F., Cunnold D.M., Fraser P.J., Simmond P.G., McCulloch A., Harth C., Reimann S., Salameh P., O'Doherty S., Wang R.H.J., Porter L.W., Miller B.R., Krummel P.B. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century // Geophys. Res. Lett. 2005. V. 32. P. L07809. DOI: 10.1029/2004GL022228.
3. Sies H. Review Strategies of antioxidant defense // Eur. J. Biochem. 1993. V. 215. P. 213–219. DOI: 10.1111/j.1432-1033.1993.tb18025.x. PMID 7688300.
4. Wilson W.J., Schwartz P.R., Neugebauer G., Harvey P.M., Becklin E.E. Infrared stars with strong 1665/1667-MHz OH microwave emission // Astrophys. J. 1972. V. 177. P. 523–540.
5. Robinson B.J., McGee R.X. OH molecules in the interstellar medium // Ann. Rev. Astron. Astrophys. 1967. V. 5. P. 183–212. DOI: 10.1146/annurev.aa.05.090167.001151.
6. Csengeri T., Wyrowski F., Menten K.M., Wiesemeyer H., Güsten R., Stutzki J., Heyminck S., Okada Y. SOFIA/GREAT observations of OD and OH rotational lines towards high-mass star forming regions // Astron. Astrophys. 2022. V. 658. P. A193. DOI: 10.1051/0004-361/202140577.
7. Gacesa M., Lewkow N., Kharchenko V. Non-thermal production and escape of OH from the upper atmosphere of Mars // Icarus. 2017. V. 284. P. 90–96. DOI: 10.1016/j.icarus.2016.10.030.
8. Maillard J.P., Chauville J., Mantz A.W. High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm // J. Mol. Spectrosc. 1976. V. 63. P. 120–141. DOI: 10.1016/0022-2852(67)90139-7.
9. Ewart P., O'Leary S.V. Detection of OH in a flame by degenerate four-wave mixing // Opt. Lett. 1986. V. 11, N 5. P. 279–281. DOI: 10.1364/ol.11.000279.
10. Abrams M.C., Davis S.P., Rao M.L.P., Engleman Jr R., Brault J.W. High-resolution Fourier transform spectroscopy of the Meinel system of OH // Astrophys. J. Suppl. 1994. V. 93. P. 351–395. DOI: 10.1086/192058.
11. Sulakshina O.N., Borkov Yu.G. Analiz eksperimental'nykh chastot perekhodov molekuly 16OH v sostoyanii X2Π s pomoshch'yu printsipa Rittsa // Optika atmosf. i okeana. 2019. V. 32, N 5. P. 346–357. DOI: 10.15372/AOO20190502.
12. Sulakshina O.N., Borkov Yu.G. Global modelling of the observed line positions: Dunham coefficients for the ground state of 16OH molecule // Mol. Phys. 2022. V. 120. DOI: 10.1080/00268976.2022.2072408.
13. Sulakshina O.N., Borkov Yu.G. Global modelling of the observed line positions for the spectra of ultraviolet bands: Dunham coefficients for the A2S+ excited state of the 16OH molecule // Mol. Phys. 2023. V. 121. DOI: 10.1080/00268976.2023.2222346.
14. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Reed Z.D., Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W, Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander A.J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
15. Amiot C., Maillard J.-P., Chauville J. Fourier spectroscopy of the OD infrared spectrum. Merge of electronic, vibration-rotation, and microwave spectroscopic data // J. Mol. Spectrosc. 1981. V. 87. P. 196–218. DOI: 10.1016/0022-2852(81)90089-8.
16. Amano T. Difference frequency laser spectroscopy of OH and OD: Simultaneous fit of the infrared and microwave lines // J. Mol. Spectros. 1984. V. 103. P. 436–456. DOI: 10.1016/0022-2852(84)90067-5.
17. Abrams M.C., Davis S.P., Rao M.L.P., Engleman R.J.R. The inductively coupled plasma spectrum of OD in the infrared // Pramana J. Phys. 1992. V. 39. P. 163–176.
18. Abrams M.C., Davis S.P., Rao M.L.P., Engleman R.J.R. High-resolution Fourier transform spectroscopy of the vibration-rotation spectrum of the OD radical // J. Mol. Spectrosc. 1994. V. 165. P. 57–74. DOI: 10.1006/jmsp.1994.1110.
19. Drouin B.J. Isotopic spectra of the hydroxyl radical // J. Phys. Chem. A. 2013. V. 117. P. 10076–10091. DOI: 10.1021/jp400923z.
20. Flaud J.-M., Camy-Peyret C., Maillard J.P. Higher ro-vibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 2800–6200 cm-1 // Mol. Phys. 1976. V. 32. P. 499–521. DOI: 10. 1080/00268977600103251.
21. Mikhailenko S.N., Tashkun S.A., Putilova T.A., Starikova E.N., Daumont L., Jenouvrier A., Fally S., Carleer M., Hermans C., Vandaele A.C. Critical evaluation of measured rotation-vibration transitions and an experimental dataset of energy levels of HD18O // J. Quant. Spectosc. Radiat. Transfer. 2009. V. 110. P. 597–608. DOI: 10.1016/j.jqsrt.2009.01.012.
22. Tashkun S.A., Velichko T.I., Mikhailenko S.N. Critical evaluation of measured pure-rotational and rotation-vibration line positions and experimental dataset of energy levels of 12C16O in X1S state // J. Quant. Spectosc. Radiat. Transfer. 2010. V. 111. P. 1106–1116. DOI: 10.1016/j.jqsrt.2010.01.026.
23. Sulakshina O.N., Borkov Yu.G. Critical evaluation of measured line positions of 14N16O in X2Π state // J. Quant. Spectosc. Radiat. Transfer. 2018. V. 209. P. 171–179. DOI: 10.1016/j.jqsrt.2018.01.020.
24. Furtenbacher T., Császár A.G., Tennyson J. MARVEL: Measured active rotational-vibrational energy levels // J. Mol. Spectrosc. 2007. V. 245. P. 115–125. DOI: 10.1016/j.jms.2007.07.005.
25. Tashkun S.A., Perevalov V.I., Teffo J.-L., Bykov A.D., Lavrentieva N.N. CDSD-1000, the high-temperature carbon dioxide spectroscopic databank // J. Quant. Spectosc. Radiat. Transfer. 2003. V. 82. P. 165–196. DOI: 10.1016/S0022-4073(03)00152-3.