Vol. 38, issue 09, article # 12

Kulik K. N., Pugacheva A. M., Kurakov S. A., Kuzenko A. N., Zykova A. A. Autonomous monitoring systems for desertification foci. // Optika Atmosfery i Okeana. 2025. V. 38. No. 09. P. 775–777. DOI: 10.15372/AOO20250912 [in Russian].
Copy the reference to clipboard

Abstract:

Land degradation and increasing deflationary processes make urgent the development of effective methods for monitoring atmospheric and soil processes. The paper describes SAM-V autonomous monitoring system designed at Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences (Tomsk). Its advantages are: domestic software which enables data collection with a preset frequency, variability of configuration, ease of transportation and installation, and high measurement accuracy. The system was installed by scientists of the Federal Research Center of Agroecology, Russian Academy of Sciences, on a local deflation outbreak of 182.6 ha in area in the Republic of Kalmykia. New soil and atmospheric parameters received with this system will be used to analyze aeolian processes in order to scientifically substantiate phytomeliorative measures for the restoration of degraded lands. In the future, it is planned to expand the use of SAM-V system on other scientific objects.

Keywords:

desertification, autonomous monitoring system, dust aerosol, soil-atmospheric indicators, phytomeliorative measures

References:

1. Konventsiya Organizatsii Ob"edinennykh Natsii po bor'be s opustynivaniem v tekh stranakh, kotorye ispytyvayut ser'eznuyu zasukhu i/ili opustynivanie, osobenno v Afrike (1994): [Ofitsial'nyi dokument]. URL: https://UNCCD_Convention_text_RUS.pdf (data obrashcheniya: 20.05.2025).
2. Semenov O.E. Vvedenie v eksperimental'nuyu meteorologiyu i klimatologiyu peschanykh bur' / pod red. O.G. Chkhetiani, I.A. Repina. 2-e izd., ispr. i dop. M.: Fizmatkniga, 2023. 448 з.
3. Gravin V.O., Popov I.K. Gidroakusticheskaya sistema monitoringa gidrofizicheskikh parametrov arkticheskikh morei (na primere Karskogo morya) // Rossiiskie polyarnye issledovaniya. 2021. V. 44, N 2. P. 14–17.
4. Tikhomirov A.A., Korolkov V.A., Smirnov S.V., Azbukin A.A., Bogushevich A.Ya., Kalchikhin V.V., Kobzev A.A., Kurakov S.A., Telminov A.E., Bogomolov V.Yu., Kabanov M.M., Kapustin S.A., Repina I.A., Pashkin A.D., Stepanenko V.M. Meteorologicheskie nablyudeniya i ikh pribornoe obespechenie v IMKES SO RAN // Optika atmosf. i okeana. 2022. V. 35, N 2. P. 122–131. DOI: 10.15372/AOO20220206; Tikhomirov A.A., Korolkov V.A., Smirnov S.V., Azbukin A.A., Bogushevich A.Ya., Kalchikhin V.V., Kobzev A.A., Kurakov S.A., Telminov A.E., Bogomolov V.Yu., Kabanov M.M., Kapustin S.A., Repina I.A., Pashkin A.D., Stepanenko V.M. Meteorological observations and their instrumental support at IMCES SB RAS // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 456–466.
5. Shishkin Yu.E. Kontseptsiya intellektual'noi sistemy avtomatizirovannogo ekologicheskogo monitoringa na baze malogabaritnykh avtonomnykh robotov // Sistemy kontrolya okruzhayushchei sredy. 2018. V. 34, N 14. P. 63–69. DOI: 10.33075/2220-5861-2018-4-63-69.