Vol. 38, issue 09, article # 11
Copy the reference to clipboard
Abstract:
The kinetics processes of triplet bands of molecular nitrogen were studied in air at pressures of 0.03–1 Torr. The dependences of the ratios of the spectral density of radiation energy of four bands of the first positive system of nitrogen to two bands of the second positive system of nitrogen are demonstrated. The results of simulation and experimental measurements show an increase in the ratio of the intensities of the bands of the first positive system to the intensities of the second positive system with a decrease in the pressure. It was found that this is due to an increase in the rate of quenching of the B3Πg state by nitrogen molecules with an increase in atmospheric density. These results explain the reason for the change in the color of red sprites with a decrease in the altitude above sea level starting from about 50 km.
Keywords:
air discharge, molecular nitrogen triplet state, plasma diffuse jet, simulation, experiment
Figures:
References:
1. Pasko V.P. Recent advances in theory of transient luminous events // J. Geophys. Res. 2010. V. 115. DOI: 10.1029/2009JA014860.
2. Kuo C.L. The middle atmosphere: Discharge phenomena // Advances in Spacecraft Systems and Orbit Determination. Shanghai: InTech, 2012. P. 1–28.
3. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskii P.M., Samokhvalov I.V. Elektroopticheskie yavleniya v atmosfere. Tomsk: Izd-vo NTL, 2015. 314 p.
4. Surkov V.V., Hayakawa M. Progress in the study of transient luminous and atmospheric events: A review // Surv. Geophys. 2020. V. 41. P. 1101–1142. DOI: 10.1007/s10712-020-09597-2.
5. Franz R.C., Nemzek R.J., Winckler J.R. Television image of a large upward electrical discharge above a thunderstorm system // Science. 1990. V. 249. P. 48–51. DOI: 10.1126/science.249.4964.48.
6. Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., Hensley B.A., Kanmae T. Sprite initiation altitude measured by triangulation // J. Geophys. Res. 2010. V. 115, N A00E12. DOI: 10.1029/2009JA014543.
7. Stenbaek-Nielsen H.C., McHarg M.G., Haaland R., Luque A. Optical spectra of small-scale sprite features observed at 10.000 fps // J. Geophys. Res.: Atmos. 2020. V. 125, N e2020JD033170. DOI: 10.1029/2020JD033170.
8. Luque A., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R. Sprite beads and glows arising from the attachment instability in streamer channels // J. Geophys. Res.: Space Phys. 2016. V. 121. P. 2431–2449. DOI: 10.1002/2015JA022234.
9. Marskar R. Genesis of column sprites: Formation mechanisms and optical structures // Plasma Sources Sci. Technol. 2024. V. 33, N 025024. DOI: 10.48550/arXiv.2310.08254.
10. Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., McHarg M.G., Ebert U., Luque A. On the emergence mechanism of carrot sprites // Geophys. Res. Lett. 2020. V. 47, N e2019GL085776. DOI: 10.1029/2019GL085776.
11. Jehl A., Farges T., Blanc E. Color pictures of sprites from nondedicated observation on board the International Space Station // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 454–461. DOI: 10.1029/2012JA018144.
12. Ihaddadene M.A., Celestin S. Determination of sprite streamers altitude based on N2 spectroscopic analysis // J. Geophys. Res.: Space Phys. 2017. V. 122. P. 1000–1014. DOI: 10.1002/2016JA023111.
13. Soula S., van Der Velde O., Montanya J., Huet P., Barthe C., Bór J. Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island // Atmos. 2011. V. 116, N D19103. DOI: 10.1029/2010JD015581.
14. Gordillo-Vázquez F.J. Air plasma kinetics under the influence of sprites // J. Phys. D: Appl. Phys. 2008. V. 41, N 234016. DOI: 10.1088/0022-3727/41/23/234016.
15. Gordillo-Vázquez F.J. Vibrational kinetics of air plasmas induced by sprites // J. Geophys. Res.: Space Phys. 2010. V. 115, N A00E25. DOI: 10.1029/2009JA014688.
16. Luque A., Gordillo-Vázquez F.J. Modeling and analysis of N2(B3Pg) and N2(C3Pu) vibrational distributions in sprites // J. Geophys. Res.: Space Phys. 2011. V. 116, N A02306. DOI: 10.1029/2010JA015952.
17. Williams E., Valente M., Gerken E., Golka R. Sprites, Elves, and Intense Lightning Discharges. Dordrecht: Springer, 2006. P. 237–251.
18. Goto Y., Ohba Y., Narita K. Optical and spectral characteristics of low pressure air discharges as sprite models // J. Atmos. Electr. 2007. V. 27, N 2. P. 105–112. DOI: 10.1541/jae.27.105.
19. Opaits D.F., Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Study of streamers in gradient density air: Table top modeling of red sprites // Geophys. Res. Lett. 2010. V. 37, N L14801. DOI: 10.1029/2010GL043996.
20. Evtushenko A.A., Gushchin M.E., Korobkov S.V., Strikovskiy A.V., Mareev E.A. Simulation of high-altitude discharges in a large plasma facility // Geomagn. Aeron. 2020. V. 60. P. 345–354. DOI: 10.1134/S0016793220030068.
21. Baksht E.Kh., Vinogradov N.P., Tarasenko V.F. Formirovanie strimerov v neodnorodnom elektricheskom pole pri nizkikh davleniyakh vozdukha // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 777–781. DOI: 10.15372/AOO20220911; Baksht E.Kh., Vinogradov N.P., Tarasenko V.F. Generation of streamers in an inhomogeneous electric field under low air pressure // Atmos. Ocean. Opt. 2022. V. 35. P. 777–781.
22. Sorokin D., Tarasenko V., Baksht E.Kh., Vinogradov N.P. Ionization waves, propagating in opposite directions, as in red sprites // Europ. J. Environ. Earth Sci. 2022. V. 3, N 6. P. 42–48. DOI: 10.24018/ejgeo.2022.3.6.322.
23. Tarasenko V.F., Vinogradov N.P., Baksht E.Kh., Sorokin D.A., Pechenitsin D.S. Yarkie oblasti izlucheniya v vozdukhe nizkogo davleniya pri vstreche plazmennykh diffuznykh strui // Optika atmosf. i okeana. 2024. V. 37, N 4. P. 294–301. DOI: 10.15372/AOO20240405; Tarasenko V.F., Vinogradov N.P., Baksht E.Kh., Sorokin D.A., Pechenitsin D.S. Bright areas of luminescence in low-pressure air when diffuse plasma jets meet // Atmos. Ocean. Opt. 2024. V. 37, N 4. P. 547–555.
24. Kirillov A.S., Belakhovsky V.B. The kinetics of N2 triplet electronic states in the upper and middle atmosphere during relativistic electron precipitations // Geophys. Res. Lett. 2019. V. 46, N 13. P. 7734–7743. DOI: 10.1029/2019GL083135.
25. Kirillov A.S., Belakhovsky V.B. Svechenie polos molekulyarnogo azota v atmosfere Zemli vo vremya vysypaniya vysokoenergichnykh elektronov // Geomagnetizm i aeronomiya. 2020. V. 60, N 1. P. 93–98. DOI: 10.31857/S0016794020010071.
26. Gilmore F.R., Laher R.R., Espy P.J. Franck-Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems // J. Phys. Chem. Ref. Data. 1992. V. 21, N 5. P. 1005–1107. DOI: 10.1063/1.555910.
27. Kirillov A.S. Intermolecular electron energy transfer processes in the quenching of N2(C3Pu, v = 0–4) by collisions with N2 molecules // Chem. Phys. Lett. 2019. V. 715. P. 263–267. DOI: 10.1016/j.cplett.2018.11.048.
28. Pancheshnyi S.V., Starikovskaia S.M., Starikovskii A.Yu. Collisional deactivation of N2(C3Pu, v = 0, 1, 2, 3) states by N2, O2, H2, and H2O molecules // Chem. Phys. 2000. V. 262, N 2. P. 349–357. DOI: 10.1016/S0301-0104(00)00338-4.
29. Itikawa Y. Cross sections for electron collisions with nitrogen molecules // J. Phys. Chem. Ref. Data. 2006. V. 35, N 1. P. 31–53. DOI: 10.1063/1.1937426.
30. Nassar H., Pellerin S., Musiol K., Martinie O., Pellerin N., Cormier J.-M. N2+/N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra // J. Phys. D: Appl. Phys. 2004. V. 37, N 14. P. 1904–1916. DOI: 10.1088/0022-3727/37/14/005.
31. Laux C.O. Radiation and nonequilibrium collisional-radiative models // Physico-Chemical Modeling of High Enthalpy and Plasma Flows / D. Fletcher, J.-M. Charbonnier, G.S.R. Sarma, T. Magin (eds.). Rhode-Saint-Genuse: Belgium, 2002. P. 2002–2007.