Vol. 38, issue 09, article # 10
Copy the reference to clipboard
Abstract:
Studying the characteristics and dynamics of stratospheric polar vortices requires the correct determination of their edges. Polar vortex delineation methods are mainly based on the values of potential vorticity (PV) or geopotential (GPT). The problem in directly comparing the PV and GPT methods is that the former determines the vortex edge on isentropic surfaces, while the latter does it on isobaric ones. In this paper, we present an algorithm developed to adequately compare the results of polar vortex delineation by these methods. The algorithm is based on projecting the vortex edges onto isopotential surfaces (i.e., surfaces of constant geopotential height), same for both methods. Application of the algorithm to delineating the 2019 Antarctic polar vortex showed, in particular, the following: (1) during the period of the vortex stable state (June 1 – August 31), its area on isopotential surfaces estimated by the GPT method exceeds the area estimated by the PV method by 16.17–21.20 million km2 in the range of geopotential heights 20.89–24.37 km, respectively; (2) the dynamics of the vortex edge and area estimated by both methods are generally similar, but the vortex edges obtained by the GPT method are smoother, and the strong irregularity of the vortex edges obtained by the PV method leads to abrupt changes in the vortex area. The algorithm will be useful in studying the dynamics of polar vortices from the beginning of their formation to the moment of breakup in both hemispheres.
Keywords:
stratospheric polar vortex, vortex delineation method, geopotential, potential vorticity, ERA5
Figures:
References:
1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56, N 11. P. 1594–1613. DOI: 10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2.
2. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Am. Meteorol. Soc. 2017. V. 98, N 1. P. 37–44. DOI: 10.1175/BAMS-D-15-00212.1.
3. Manney G.L., Zurek R.W., Gelman M.E., Miller A.J., Nagatani R. The anomalous Arctic lower stratospheric polar vortex of 1992–1993 // Geophys. Res. Lett. 1994. V. 21, N 22. P. 2405–2408. DOI: 10.1029/94GL02368.
4. Schoeberl M.R., Lait L.R., Newman P.A., Rosenfield J.E. The structure of the polar vortex // J. Geophys. Res. 1992. V. 97, N D8. P. 7859–7882. DOI: 10.1029/91JD02168.
5. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316. DOI: 10.1029/1999RG900008.
6. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31, N 21. P. L21104. DOI: 10.1029/2004GL020596.
7. Newman P.A. Chemistry and dynamics of the Antarctic ozone hole // The stratosphere: Dynamics, Transport, and Chemistry. American Geophysical Union, 2010. V. 190. P. 157–171. DOI: 10.1029/2004GL020596.
8. Finlayson-Pitts B.J., Pitts J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego, CA: Academic Press, 2000. 969 p.
9. Holton J.R., Haynes P.H., McIntyre M.E., Douglass A.R., Rood R.B., Pfister L. Stratosphere–troposphere exchange // Rev. Geophys. 1995. V. 33, N 4. P. 403–439. DOI: 10.1029/95RG02097.
10. Hsu J., Prather M.J. Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone? // Geophys. Res. Lett. 2014. V. 41, N 24. P. 9024–9032. DOI: 10.1002/2014GL061994.
11. Alexander S.P., Murphy D.J., Klekociuk A.R. High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69°S, 78°E) // Atmos. Chem. Phys. 2013. V. 13, N 6. P. 3121–3132. DOI: 10.5194/acp-13-3121-2013.
12. Mihalikova M., Kirkwood S. Tropopause fold occurrence rates over the Antarctic station Troll (72 °S, 2.5 °E) // Ann. Geophys. 2013. V. 31, N 4. P. 591–598. DOI: 10.5194/angeo-31-591-2013.
13. Gray L.J., Brown M.J., Knight J., Andrews M., Lu H., O’Reilly C., Anstey J. Forecasting extreme stratospheric polar vortex events // Nat. Commun. 2020. V. 11, N 1. P. 4630. DOI: 10.1038/s41467-020-18299-7.
14. Lu Y., Tian W., Zhang J., Huang J., Zhang R., Wang T., Xu M. The impact of the stratospheric polar vortex shift on the Arctic oscillation // J. Climate. 2021. V. 34, N 10. P. 4129–4143. DOI: 10.1175/JCLI-D-20-0536.1.
15. Nash E.R., Newman P.A., Rosenfield J.E., Schoeberl M.R. An objective determination of the polar vortex using Ertel's potential vorticity // J. Geophys. Res. 1996. V. 101, N D5. P. 9471–9478. DOI: 10.1029/96JD00066.
16. Evtushevsky O., Klekociuk A., Grytsai A., Milinevsky G., Lozitsky V. Troposphere and stratosphere influence on tropopause in the polar regions during winter and spring // Int. J. Remote Sens. 2011. V. 32, N 11. P. 3153–3164. DOI: 10.1080/01431161.2010.541515.
17. Roscoe H.K. Possible descent across the “tropopause” in Antarctic winter // Adv. Space Res. 2004. V. 33, N 7. P. 1048–1052. DOI: 10.1016/S0273-1177(03)00587-8.
18. Tomikawa Y., Nishimura Y., Yamanouchi T. Characteristics of tropopause and tropopause inversion layer in the polar region // Sci. Online Lett. Atmos. 2009. V. 5. P. 141–144. DOI: 10.2151/sola.2009-036.
19. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59. N 1. P. e2020RG000708. DOI: 10.1029/2020RG000708.
20. Gerasimov V.V., Zuev V.V., Savelieva E.S., Nevzorov A.V. The impact of volcanic eruptions, pyrocumulonimbus plumes, and the Arctic polar vortex intrusions on aerosol loading over Tomsk (Western Siberia, Russia) as observed by lidar from 2018 to 2022 // Int. J. Remote Sens. 2024. V. 45, N 16. P. 5464–5505. DOI: 10.1080/01431161.2024.2377833.
21. Zhang Y., Li J., Zhou L. The relationship between polar vortex and ozone depletion in the Antarctic stratosphere during the period 1979–2016 // Adv. Meteorol. 2017. V. 2017. P. 3078079. DOI: 10.1155/2017/3078079.
22. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18, N 18. P. 13547–13579. DOI: 10.5194/acp-18-13547-2018.
23. Lawrence Z.D., Manney G.L. Characterizing stratospheric polar vortex variability with computer vision techniques // J. Geophys. Res. D: Atmos. 2018. V. 123, N 3. P. 1510–1535. DOI: 10.1002/2017JD027556.
24. Lecouffe A., Godin-Beekmann S., Pazmiño A., Hauchecorne A. Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 // Atmos. Chem. Phys. 2022. V. 22, N 6. P. 4187–4200. DOI: 10.5194/acp-22-4187-2022.
25. Serra M., Sathe P., Beron-Vera F., Haller G. Uncovering the edge of the polar vortex // J. Atmos. Sci. 2017. V. 74, N 11. P. 3871–3885. DOI: 10.1175/JAS-D-17-0052.1.
26. Waugh D.W. Fluid dynamics of polar vortices on Earth, Mars, and Titan // Ann. Rev. Fluid Mech. 2023. V. 55. P. 265–289. DOI: 10.1146/annurev-fluid-120720-032208.
27. Holton J.R., Hakim G.J. An introduction to dynamic meteorology. 5th Edition. San Diego: Academic press, 2013. V. 88. 552 p. DOI: 10.1016/C2009-0-63394-8.
28. Zuev V.V., Savelieva E.S. Antarctic polar vortex dynamics depending on wind speed along the vortex edge // Pure Appl. Geophys. 2022. V. 179, N 6–7. P. 2609–2616. DOI: 10.1007/s00024-022-03054-4.
29. Zuev V.V., Savelieva E.S., Pavlinsky A.V. Osobennosti oslableniya stratosfernogo polyarnogo vikhrya, predshestvuyushchie ego razrusheniyu // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 81–83. DOI: 10.15372/AOO20220112; Zuev V.V., Savelieva E.S., Pavlinsky A.V. Features of stratospheric polar vortex weakening prior to breakdown // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 183–186.
30. Zuev V.V., Savelieva E.S. Stratospheric polar vortex dynamics according to the vortex delineation method // J. Earth Syst. Sci. 2023. V. 132, N 1. P. 39. DOI: 10.1007/s12040-023-02060-x.
31. Zuev V.V., Sidorovski E.A., Pavlinsky A.V. Dinamika stratosfernogo polyarnogo vikhrya v 2022/23 year po metodam okonturivaniya s pomoshch'yu geopotentsiala i potentsial'noi zavikhrennosti // Optika atmosf. i okeana. 2024. V. 37, N 10. P. 857–860. DOI: 10.15372/AOO20241007; Zuev V.V., Sidorovski E.A., Pavlinsky A.V. Dynamics of the stratospheric polar vortex in 2022/2023 by vortex delineation methods using geopotential and potential vorticity // Atmos. Ocean. Opt. 2025. V. 38, N 1. P. 65–68.
32. Lee S.H., Butler A.H. The 2018–2019 Arctic stratospheric polar vortex // Weather. 2020. V. 75, N 2. P. 52–57. DOI: 10.1002/wea.3643.
33. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
34. Weisstein E.W. Cubic Spline. From MathWorld – a Wolfram Web Resource. URL: https://mathworld.wolfram.com/CubicSpline.html (last access: 10.05.2025).
35. Bartels R.H., Beatty J.C., Barsky B.A. Hermite and cubic spline interpolation // An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. San Francisco: Morgan Kaufmann, 1998. P. 9–17.
36. Smale D., Strahan S.E., Querel R., Frieß U., Nedoluha G.E., Nichol S.E., Robinson J., Boyd I., Kotkamp M., Gomez R.M., Murphy M., Tran H., McGaw J. Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8 °S, 166.7 °E) during the 2019 Antarctic stratospheric sudden warming // Tellus B. 2021. V. 73, N 1. P. 1–18. DOI: 10.1080/16000889.2021.1933783.