Vol. 38, issue 09, article # 1
Copy the reference to clipboard
Abstract:
The use of vortex laser radiation can significantly increase the information capacity of data transmission channels in free-space optical communication systems. However, atmospheric turbulence substantially limits the application of such systems. This work analyzes results of experimental study of the influence of different atmospheric turbulence conditions on vortex laser radiation characteristics. Vortex fields were generated using a phase light modulator; initial distributions of vortex beam intensity were represented by sets of concentric rings. An increase in the topological charge increased the number of those rings and reduced their thickness. It was found that, despite equal initial beam sizes, the diffractive beam size increased with the topological charge by the end of a 500-meter atmospheric propagation path, thus reducing random wandering of beam energy centroid. As the topological charge increases, the relative turbulence-induced broadening also decreases and the scintillation level rises. No dependence was found between the beam topological charge and the radius of the spatial correlation of turbulent intensity fluctuations. The experimental results supplement existing knowledge about the propagation of vortex laser radiation in a turbulent atmosphere and can be used in the design of free-space optical communication systems
Keywords:
turbulence, vortex beam, radiation propagation, beam wandering, scintillations
Figures:
References:
1. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes // Phys. Rev. A. 1992. V. 45. P. 8185–8189. DOI: 10.1103/PhysRevA.45.8185.
2. Yao A.M., Padgett M.J. Orbital angular momentum: Origins, behavior and applications // Adv. Opt. Photon. 2011. V. 3, N 2. P. 161–204. DOI: 10.1364/AOP.3.000161.
3. Padgett M.J. Orbital angular momentum 25 years on [Invited] // Opt. Express. 2017. V. 25, N 10. P. 11265–11274. DOI: 10.1364/OE.25.011265.
4. Shen Y., Wang X., Xie Z., Min C.J., Fu X., Liu Q., Gong M., Yuan X.C. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light: Sci. Appl. 2019. V. 8, N 90. P. 29. DOI: 10.1038/s41377-019-0194-2.
5. Willner A.E., Liu C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links // Nanophotonics. 2021. V. 10, N 1. P. 225–233. DOI: 10.1515/nanoph-2020-0435.
6. Willner A.E., Zhao Z., Liu C., Zhang R., Song H., Pang K., Manukyan K., Song H., Su X., Xie G., Ren Y., Yan Y., Tur M., Molisch A.F., Boyd R.W., Zhou H., Hu N., Minoofar A., Huang H. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams // APL. Photonics. 2021. V. 6, N 3. 29 p. DOI: 10.1063/5.0031230.
7. Lei T., Zhang M., Li Y., Jia P., Liu G.N., Xu X., Li Z., Min C.J., Lin J., Yu C.Y., Niu H., Yuan X.C. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings // Light: Sci. Appl. 2015. V. 4. P. e257. DOI: 10.1038/lsa.2015.30.
8. Anguita J.A., Neifeld M.A., Vasic B.V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link // Appl. Opt. 2008. V. 47. P. 2414–2429. DOI: 10.1364/AO.47.002414.
9. Malik M., O'Sullivan M., Rodenburg B., Mirhosseini M., Leach J., Lavery M.P.J., Padgett M.J., Boyd R.W. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding // Opt. Express. 2012. V. 20. P. 13195–13200. DOI: 10.1364/OE.20.013195.
10. Aksenov V.P., Pogutsa Ch.E. Vliyanie opticheskogo vikhrya na sluchainye smeshcheniya lagerr-gaussova puchka, rasprostranyayushchegosya v turbulentnoi srede // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 561–565; Aksenov V.P., Pogutsa Ch.E. The effect of optical vortex on random Laguerre–Gauss shifts of a laser beam propagating in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 1. P. 13–17.
11. Falits A.V. Bluzhdanie i fluktuatsii intensivnosti fokusirovannogo lagerra-gaussova puchka v turbulentnoi atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 9. P. 763–771. DOI: 10.15372/AOO20150901.
12. Aksenov V.P., Kolosov V.V. Scintillations of optical vortex in randomly inhomogeneous medium // Photon. Res. 2015. V. 3, N 2. P. 44–47. DOI: 10.1364/PRJ.3.000044.
13. Saito A., Tanabe A., Kurihara M., Hashimoto N., Ogawa K. Propagation properties of quantized Laguerre–Gaussian beams in atmospheric turbulence // Proc. SPIE. 2016. V. 9739, N 973914. DOI: 10.1117/12.221251.
14. Wang F., Cai Y., Eyyuboglu H.T., Baykal Y. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere // Opt. Lett. 2012. V. 37, N 2. P. 184–186. DOI: 10.1364/OL.37.000184.
15. Lukin I.P. Kol'tsevaya dislokatsiya stepeni kogerentnosti vikhrevogo besseleva puchka v turbulentnoi atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 298–308; Lukin I.P. Ring dislocation of the coherence degree of a vortex Bessel beam in a turbulent atmosphere // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 415–425.
16. Fu S., Gao C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams // Photon. Res. 2016. V. 4, N 5. P. B1–B4. DOI: 10.1364/PRJ.4.0000B1.
17. Yue P., Hu J., Yi X., Xu D., Liu Y. Effect of Airy Gaussian vortex beam array on reducing intermode crosstalk induced by atmospheric turbulence // Opt. Express. 2019. V. 27, N 26. P. 37986–37998. DOI: 10.1364/OE.27.037986.
18. Banakh V.A., Gerasimova L.O. Strong scintillations of pulsed Laguerrian beams in a turbulent atmosphere // Opt. Express. 2016. V. 24, N 17. P. 19264–19277. DOI: 10.1364/OE.24.019264.
19. Zhu L., Wang A., Deng M., Lu B., Guo X. Free-space optical communication with quasi-ring Airy vortex beam under limited-size receiving aperture and atmospheric turbulence // Opt. Express. 2021. V. 29, N 20. P. 32580–32590. DOI: 10.1364/OE.435863.
20. Ren Y.X., Xie G., Huang H., Bao Ch., Yan Y., Ahmed N., Lavery M.P.J., Erkmen B.I., Dolinar S., Tur M., Neifeld M.A., Padgett M.J., Boyd R.W., Shapiro J.H., Willner A.E. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence // Opt. Lett. 2014. V. 39, N 10. P. 2845–2848. DOI: 10.1364/OL.39.002845.
21. Dinesh P.P., Naik D.N., Narayanamurthy C.S. Insensitivity of higher order topologically charged Laguerre–Gaussian beams to dynamic turbulence impact // Opt. Commun. 2021. V. 495, N 127023. 8 p. DOI: 10.1016/j.optcom.2021.127023.
22. Yuan Y., Lei T., Li Z., Li Y., Gao S., Xie Z., Yuan X. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams // Sci. Rep. 2017. V. 7. DOI: 10.1038/srep42276.
23. Yu J., Huang Y., Wang F., Liu X., Gbur G., Cai Y. Scintillation properties of a partially coherent vector beam with vortex phase in turbulent // Opt. Express. 2019. V. 27, N 19. P. 26676–26688. DOI: 10.1364/OE.27.026676.
24. Falits A.V., Kuskov V.V., Banakh V.A., Gerasimova L.O., Tsvyk R.Sh., Shesternin A.N. Deformatsiya i bluzhdanie vikhrevykh puchkov v iskusstvennoi konvektivnoi turbulentnosti // Optika atmosf. i okeana. 2023. V. 36, N 8. P. 619–630. DOI: 10.15372/AOO20230802.
25. Funes G., Vial M., Anguita J.A. Orbital-angular-momentum crosstalk and temporal fading in a terrestrial laser link using single-mode fiber coupling // Opt. Express. 2015. V. 23, N 18. P. 23133–23142. DOI: 10.1364/OE.23.023133.
26. Azbukin A.A., Bogushevich A.Ya., Il'ichevskii V.I., Korol'kov V.A., Tikhomirov A.A., Shelevoi V.D. Avtomatizirovannyi ul'trazvukovoi meteorologicheskii kompleks AMK-03 // Meteorol. i gidrol. 2006. N 11. P. 89−97.
27. Zuev V.E., Banakh V.A., Pokasov V.V. Optika turbulentnoi atmosfery. L.: Gidrometeoizdat, 1988. 270 p.