Vol. 38, issue 08, article # 6

Chentsov A. V., Chesnokova T. Yu., Kolotkov G. A., Voronina Yu. V., Voronin B. A. A possibility of tritium isotopologues HTO and T2O detection by the IR spectroscopy method in radioactive water vapors. // Optika Atmosfery i Okeana. 2025. V. 38. No. 08. P. 639–646. DOI: 10.15372/AOO20250806 [in Russian].
Copy the reference to clipboard

Abstract:

This study is devoted to the development of a trace method for monitoring tritium isotopologues of water (HTO and T2O) using infrared (IR) spectroscopy. The actuality of the work is due to the need to monitor tritium, a radioactive isotope of hydrogen formed as a result of man-made processes, including accidents at nuclear power plants. The main objective was to estimate the sensitivity of IR spectroscopy for detecting low concentrations of HTO and T2O in water vapors, which is critical for the operational monitoring of radioactive contamination. The work uses spectroscopic data from theoretical calculations and experimental measurements, including absorption line parameters from the spectra.iao.ru and HITRAN2020 databases. The line-by-line method is used to simulate transmission taking into account the refined line broadening coefficients calculated using the author's technique. The main results include: improved line broadening parameters, which increased the simulation accuracy; revealing of optimal spectral ranges for detecting HTO (1227–1236, 2219–2226 cm-1), and the intervals for T2O (930–990, 1092–1010 cm-1) located in the atmospheric window (8–12 mm); estimation of the detection threshold for tritium isotopologues at a level of 0.01–0.05% of the concentration of the main isotopologue H216O. The obtained results open up opportunities for creating real-time tritium monitoring systems, which is important in assessing environmental and radiation risks. Promising areas for further research are adaptation of the method to field conditions taking into account the atmospheric influence and integration of spectroscopic data into climate models. The work contributes to the development of environmental monitoring and radiation safety methods.

Keywords:

tritium, water vapor, isotopologues, absorption line, transmission, radioactive water, HTO, T2O

Figures:

References:

1. Fizicheskaya entsiklopediya. T. 5. Stroboskopicheskie pribory – yarkost' / gl. red. A.M. Prokhorov. M.: Sovetskaya entsiklopediya, 1988. 757 p.
2. Shishelova I., Bredgauer A.V., Muxtarova A.A. Vidy vody: Н2О, Т2О, D2O // Uspexi sovremennogo estestvoznaniya. 2010. N 10. P. 66–67.
3. Copia L., Wassenaar L.I., Juvonen R., Oikari T. Enhancing low-level tritium detection in environmental waters: Assessing the Hidex ULLA liquid scintillation counter // J. Environ. Radioact. 2024. V. 280. P. 107545. DOI: 10.1016/j.jenvrad.2024.107545.
4. KVARTA-RAD. URL: https://www.quarta-rad.ru/useful/ekologia-zdorovie/tritievaya-voda/ (data obrashcheniya: 11.04.2025).
5. Kheamsiri K., Anderson D., Tazoe H., Okada K., Otashiro N., Kuwata H., Kakiuchi H., Hosoda M., Kovács T., Tokonami S., Akata N. Elevated levels of tritium in surface water collected in the immediate aftermath of the Fukushima accident // Environ. Pollut. 2025. V. 372. P. 126040. DOI: 10.1016/j.envpol.2025.126040.
6. Chebotina M.Ya., Nikolin O.A., Smagin A.I. Tritiy v snegovom pokrove v zonax vozdeystviya predpriyatiy yaderno-toplivnogo tsikla na Urale // Vodnoe xozyaystvo Rossii: problemy, texnologii, upravlenie. 2014. N 2. P. 102–113.
7. Belan B.D., Ivlev G.A., Kozlov A.V., Pestunov D.A., Sklyadneva T.K., Fofonov A.V. Radiatsionnyy blok izmeritel'nogo kompleksa observatorii «Fonovaya». Part II. Rezul'taty izmereniy v 2021 year // Optika atmosf. i okeana.2022. V. 35, N 10. P. 843–849. DOI: 10.15372/AOO20221007; Belan B.D., Ivlev G.A., Kozlov A.V., Pestunov D.A., Sklyadneva T.K., Fofonov A.V. Solar radiation measurements at the Fonovaya observatory: Part II: Results from 2021 measurements // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 54–60.
8. Juhlke T.R., Sültenfuß J., Trachte K., Huneau F., Garel E., Santoni S., Barth J.A.C., van Geldern R. Tritium as a hydrological tracer in Mediterranean precipitation events // Atmos. Chem. Phys. 2020. V. 20. P. 3555–3568. DOI: 10.5194/acp-20-3555-2020.
9. Voronin B.A., Tennyson J., Chesnokova T.Yu., Chentsov A.V., Bykov A.D., The absorption spectrum of the H214O radioactive isotopologue of water vapour // Mol. Phys. 2024. V. 122, N 5. DOI: 10.1080/00268976.2024.2333474.
10. Voronin B.A., Tennyson J., Yurchenko S.N., Chesnokova T.Yu., Chentsov A.V., Bykov A.D., Makarova M.V., Voronina S.S., Cruz F.C. The infrared absorption spectrum of radioactive water isotopologue H215O // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2024. V. 311. P. 124007. DOI: 10.1016/j.saa.2024.124007.
11. Voronin B.A., Tennyson J., Chesnokova T.Y., Chentsov A.V., Bykov A.D. The spectrum of radioactive water vapor: The H219O radio-isotopologue // J. Radioanal. Nuclear Chem. 2024. V. 333, N 10. P. 4945–4954. DOI: 10.1007/s10967-024-09677-2.
12. Voronin B.A., Bykov A.D., Makarova M.V., Poberovskii A.V., Dudnikova E.A., Tennyson J. The absorption spectrum of short-lived isotopic variant of water, H215O: Tentative detection at the Earth’s atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 276. P. 107929. DOI: 10.1016/j.jqsrt.2021.107929.
13. Mikhaylenko S.N., Babikov Yu.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernyh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.
14. Informatsionnaya sistema «Spektroskopiya atmosfernyh gazov». URL: https://spectra.iao.ru/molecules (data obrashcheniya: 11.04.2025).
15. Polyansky O.L., Ovsyannikov R.I., Kyuberis A.A., Lodi L., Tennyson J., Zobov N.F. Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface // J. Phys. Chem. A. 2013. V. 117, N 39. P. 9633–9643. DOI: 10.1021/jp312343z.
16. Down M.J., Tennyson J., Hara M., Hatano Y., Kobayashi K. Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm-1 using new variational calculations // J. Mol. Spectrosc. 2013. V. 289, N Suppl. C. P. 35–40. DOI: 10.1016/j.jms.2013.05.016.
17. Ulenikov O.N., Cherepanov V.N., Malikova A.B. On analysis of the n2 band of the HTO molecule // J. Mol. Spectrosc. 1991. V. 146, N 1. P. 97–103. DOI: 10.1016/0022-2852(91)90373-I.
18. Libby W.F. Vibrational frequencies of the isotopic water molecules; equilibria with the isotopic hydrogens // J. Chem. Phys. 1943. V. 11, N 3. P. 101–109. DOI: 10.1063/1.1723810.
19. Staats P.A., Morgan H.W., Goldstein J.H. Infrared spectra of T2O, THO, and TDO // Chem. Phys. 1956. V. 24, N 4. P. 916–917. DOI: 10.1063/1.1742650.
20. Fry H.A., Jones L.H., Barefield J.E. Observation and analysis of fundamental bending mode of T2O // J. Mol. Spectroscopy. 1984. V. 103, N 1. P. 41–55. DOI: 10.1016/0022-2852(84)90144-9.
21. Cope S.D., Russell D.K., Fry H.A., Jones L.H., Barefield J.E. Analysis of the fundamental asymmetric stretching mode of T2O // J. Mol. Spectrosc. 1986. V. 120, N 2. P. 311–316. DOI: 10.1016/0022-2852(86)90007-X.
22. Cope S.D., Russell D.K., Fry H.A., Jones L.H., Barefield J.E. Analysis of the n1 fundamental mode of HTO // J. Mol. Spectrosc. 1988. V. 127, N 2. P. 464–471. DOI: 10.1016/0022-2852(88)90134-8.
23. Reinking J., Schlösser M., Hase F., Orphal J. First high-resolution spectrum and line-by-line analysis of the 2n2 band of HTO around 3.8 microns // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 230, N 3. P. 61–64. DOI: 10.1016/j.jqsrt.2019.03.017.
24. Reinking J., Hermann V., Müller J., Schlösser M., Hase F., Orphal J. The fundamental n3 band of DTO and the 2n1 overtone band of HTO from the analysis of a high-resolution spectrum of tritiated water vapour // J. Mol. Spectrosc. 2020. V. 370. P. 111295. DOI: 10.1016/j.jms.2020.111295.
25. Hermann V., Freise A., Schlösser M., Hase F., Orphal J. Observation and assignment of a high-resolution FTIR-spectrum of T216O, DT16O, and HT16O in the range of 4300 to 4700 cm−1 // J. Mol. Spectrosc. 2023. V. 398. P. 111859. DOI: 10.1016/j.jms.2023.111859.
26. Kobayashi K., Enokida T., Iio D., Yamada Y., Hara M., Hatano Y. Near-infrared spectroscopy of tritiated water // Fusion Sci. Technol. 2011. V. 60, N 3. P. 941–943. DOI: 10.13182/FST11-A12570.
27. Schwenke D.W. Variational calculations of rovibrational energy levels and transition intensities for tetratomic molecules // J. Phys. Chem. 1996. V. 100, N 48. P. 2867–2884. DOI: 10.1021/jp9525447.
28. Schwenke D.W., Partridge H. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data // J. Chem. Phys. 1997. V. 106, N 1. P. 4618–4639. DOI: 10.1063/1.473987.
29. Mitsel' A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Effektivnyy metod polineynogo scheta propuskaniya pogloshchayushchey atmosfery // Optika atmosf. i okeana. 1995. V. 8, N 10. P. 1547–1551.
30. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
31. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. R. Soc. A. 2012. V. 370, N 1968. P. 2520–2556. DOI: 10.1098/rsta.2011.0295.
32. Voronin B.A., Lavrentieva N.N., Lugovskoy A.A., Bykov A.D., Starikov V.I., Tennyson J. Koeffitsienty samoushireniya i ushireniya vozduxom spektral'nyx liniy HD16O // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 929–935; Voronin B.A., Lavrentieva N.N., Lugovskoy A.A., Bykov A.D., Starikov V.I., Tennyson J. Self- and air-broadening coefficients of HD16O spectral lines // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 27–34.
33. Voronin B.A., Lavrentieva N.N., Mishina T.P., Chesnokova T.Yu., Barber M.J., Tennyson J. Estimate of the J¢J¢¢ dependence of water vapor line broadening parameters // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2308–2314. DOI: 10.1016/j.jqsrt.2010.05.015.
34. Rothman L.S., Jacquemart D., Barbe A., Benner D.C., Birk M., Brown L.R., Carleer M.R., Chackerian C., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud J.-M., Gamache R.R., Goldman A., Hartmann J.-M., Jucks K.W., Maki A.G., Mandin J.-Y., Massie S.T., Orphal J., Perrin A., Rinsland C.P., Smith M.A.H., Tennyson J., Tolchenov R.N., Toth R.A., Auwera A.J., Varanasi P., Wagner G. The HITRAN2004 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 96, N 2. P. 139–204. DOI: 10.1016/j. jqsrt.2004.10.008.
35. Bray C., Pailloux A., Plumeri S. Tritiated water detection in the 2.17 mm spectral region by cavity ringdown spectroscopy // Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment. 2015. V. 789. P. 43–49. DOI: 10.1016/j.nima.2015.03.064.cea-02386634.
36. Cherrier P.P., Beckwith P.H., Reid J. Linewidths and linestrengths in the ν2 band of HTO as measured with a tunable diode laser // J. Mol. Spectrosc. 1987. V. 121, N 1. P. 69–74. DOI: 10.1016/0022-2852(87)90171-8.
37. Anderson G., Clough S., Kneizys F., Chetwynd J., Shettle E. AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Paper. N 954. Hanscom: Air Force Geophysics Laboratory, 1986. 25 p.