Vol. 37, issue 10, article # 10

Razenkov I. A. Turbulent lidar measurement technique and comparison with ground-based observations. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 874–882. DOI: 10.15372/AOO20241010 [in Russian].
Copy the reference to clipboard

Abstract:

The history of the creation of a turbulent lidar at IAO SB RAS began 11 years ago, when, with the help of a bulky laboratory installation, it was first experimentally possible to register the backscatter enhancement (BSE) effect in a turbulent atmosphere. Subsequently, a number of design solutions were proposed to improve the lidar, which made it possible to reduce dimensions and increase reliability. The main features of the lidar design are: the coincidence of the optical axes of the transmitter and receiver; the presence of an additional receiving channel; operation in the photon counting mode with the accumulation of echo signals. The experimental technique using a turbulent lidar, which is a new type of laser locator, is described. An algorithm is given for determining the profile of the structural characteristic of turbulent fluctuations of the refractive index of air from the ratio of echo signals. The experimental verification of the technique was performed and the lidar data were compared with the readings of a solar radiometer and a scintillometer. In the future, the development of turbulent lidar technology will allow remote monitoring of the turbulence intensity in the atmospheric boundary layer from the ground, for example, on the glide path at airports; detecting clear air turbulence (CAT) in advance from aircraft, etc.

Keywords:

micro pulse lidar, turbulence, backscattering enhancement, photon counting mode

References:

1. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskii V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyi reestr otkrytii SSSR // Byull. izobretenii. 1989. N 21.
2. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prokhozhdeniya. 1982. V. 137, iss. 3. P. 501–527.
3. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
4. Ustroistvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere: Pat. 153460. Rossiya, MKP, G01S 17/95. Razenkov I.A., Banakh V.A., Nadeev A.I.; Feder. gos. byud. uchr. nauki Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2014149951/28; Zayavl. 10.12.2014; Opubl. 20.07.2015. Byul. N 20.
5. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoi atmosfere. M.: Nauka, 1976. 280 p.
6. Razenkov I.A. Analiz tekhnicheskikh reshenii pri proektirovanii turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 766–776. DOI: 10.15372/AOO20220910; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158.
7. Razenkov I.A. Evristicheskii podkhod k opredeleniyu strukturnoi kharakteristiki Cn2 iz lidarnykh dannykh // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 195–204. DOI: 10.15372/AOO20220304; Razenkov I.A. A heuristic approach to defining the structure parameter of the refractive index of the atmosphere from turbulent lidar data // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 345–354.
8. Vorob’ev V.V. O primenimosti asimptoticheskikh formul vosstanovleniya parametrov «opticheskoi» turbulentnosti iz dannykh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
9. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere / C. Weitkamp (ed.). Berlin: Springer, 2005. 443 p.
10. Donovan D.P., Whiteway J.A., Carswell A.I. Correction for nonlinear photon-counting effects in lidar systems // Appl. Opt. 1993. V. 32. P. 6742–6753.
11. Venttsel' E.S., Ovcharov L.A. Teoriya veroyatnostei i ee inzhenernye prilozheniya. 2-e izd. M.: Vysshaya shkola, 2000. 480 p.
12. Khmelevtsov S.S., Tsvyk R.Sh. Fluktuatsii intensivnosti lazernogo lucha pri rasprostranenii v turbulentnoi atmosfere // Izv. vuzov. Radiofizika. 1970. V. 13, N 1. P. 146–148.
13. Wang T., Ochs G., Clifford S. Saturation-resistant optical scintillometer to measure Cn2 // J. Opt. Soc. Am. 1978. V. 68. P. 334–338.