Vol. 37, issue 06, article # 5

Gubanova D. P., Chkhetiani O. G., Maksimenkov L. O. Short-period variations in microphysical characteristics of aerosol nanoparticles in the dry steppe zone of southern Russia in summer. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 475–485. DOI: 10.15372/AOO20240605 [in Russian].
Copy the reference to clipboard

Abstract:

The first results of summer field observations of the microphysical characteristics of ultrafine aerosol particles in the near-surface layer of the atmosphere in the dry steppe zone of southern Russia in 2021 and 2022 are considered. Taking into account the synoptic and meteorological conditions, the daily changes in concentration and size distribution of ultrafine aerosols, as well as their short-term variability are studied. The constant presence of Aitken particles is established at any time of the day and under any meteorological conditions. Minimal concentrations of nucleation particles and Aitken particles are detected at night and in the early morning. The highest rate of generation of nucleation particles is typical for the morning hours, when photochemical processes are activated, thus causing the morning maxima of concentrations of nucleation and Aitken particles. During the night hours, an increase in the concentration of transient subfraction particles is observed. The features of the short-period variability of ultrafine aerosols in the dry steppe zone of southern Russia are discussed taking into account the general pattern of daily aerosol generation dynamics and subsequent particle growth in the atmosphere, as well as by comparing with the results of observations of ultrafine aerosols in some other regions of the world.

Keywords:

atmosphere, dry steppe zone, south of Russia, aerosol, nanoparticles, nucleation mode, Aitken mode, transient subfraction, counting concentration, daily variation, particle size distribution, meteorological parameters

Figures:

References:

1. Seinfeld J.H., Pandis S.N. Atmospheric chemistry and physics: From air pollution to climate change. 2nd еd. New York: Wiley, USA, 2006. 1232 p.
2. Lushnikov A.A., Zagainov V.A., Lyubovtseva Yu.S. Mehanizmy obrazovaniya nanoaerozolei v troposfere // Himicheskaya fizika. 2015. V. 34, N 10. P. 51–62. DOI: 10.7868/S0207401X1510009X.
3. Fuks N.A. Mehanika aerozolei. M.: Izd-vo AN SSSR, 1955. 351 з.
4. Arshinov M.Yu. Issledovanie atmosfernyh nanochastits i ih roli v formirovanii dispersnogo sostava aerozolya: dis. … kand. fiz.-mat. nauk. Tomsk: RGB, 2007. 182 p.
5. Lushnikov A.A., Zagainov V.A., Agranovskii I.E., Lyubovtseva Yu.S. Fiziko-himicheskie protsessy obrazovaniya atmosfernyh aerozolei // ZhFH. 2008. V. 82. N 10. P. 1950–1958.
6. Gubanova D.P., Vinogradova A.A., Lezina E.A., Iordanskii M.A. Uslovno-fonovyi uroven' aerozol'nogo zagryazneniya prizemnogo vozduha v Moskve i prigorode: sezonnye variatsii // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 6. P. 754–773. DOI: 10.31857/S0002351523060056.
7. Fuks N.A., Sutugin A.G. Vysokodispersnye aerozoli // Uspehi himii. 1968. V. XXXVII, iss. 11. P. 1965–1980.
8. Preining O. The science of ultrafine aerosols // Pure Appl. Chem. 1992. V. 64, N 11. P. 1679–1684.
9. Kulmala M., Vehkamäki H., Petäjä T., Dal Maso M., Lauri A., Kerminen V.-M., Birmili W., McMurry P.H. Formation and growth rates of ultrafine atmospheric particles: A review of observations // J. Aerosol Sci. 2004. V. 35, N 2. P. 143–176. DOI: 10.1016/j.jaerosci.2003.10.003.
10. Kulmala M., Maso M.D., Mäkelä J.M., Pirjola L., Väkevä M., Aalto P., Miikkulainen P., Hämeri K., O’Dowd C.D. On the formation, growth and composition of nucleation mode particles // Tellus. 2001. V. B53. P. 479–490. DOI: 10.3402/tellusb.v53i4.16622.
11. Jose S., Mishra A.K., Lodhi N.K., Sharma S.K., Singh S. Characteristics of aerosol size distributions and new particle formation events at Delhi: An urban location in the Indo-Gangetic Plains // Front. Earth Sci. 2021. V. 9:750111. DOI: 10.3389/FEART.2021.750111.
12. Kompalli S.K., Babu S.S., Moorthy K.K., Gogoi M.M., Nair V.S., Chaubey J.P. The formation and growth of ultrafine particles in two contrasting environments: A case study // Ann. Geophys. 2014. V. 32. P. 817–830. DOI: 10.5194/angeo-32-817-2014.
13. Bulatovic I., Igel A.L., Leck C., Heintzenberg J., Riipinen I., Ekman A.M.L. The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data // Atmos. Chem. Phys. 2021. V. 21. P. 3871–3897. DOI: 10.5194/acp-21-3871-2021.
14. Lee S.H., Gordon H., Yu H., Lehtipalo K., Haley R., Li Y., Zhang R. New Particle formation in the atmosphere: From molecular clusters to global climate // J. Geophys. Res.: Atmos. 2019. V. 124, N 13. P. 7098–7146. DOI: 10.1029/2018JD029356.
15. Zayakhanov A.S., Zhamsueva G.S., Sungrapova I.P., Tsydypov V.V. Osobennosti sutochnoi izmenchivosti mikrodispersnoi fraktsii aerozolya v atmosfere pribrezhnoi zony ozera Baikal i aridnoi zony Mongolii // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 17–23. DOI: 10.15372/AOO20180103; Zayakhanov A.S., Zhamsueva G.S., Sungrapova I.P., Tsydypov V.V. Features of diurnal variability of ultrafine aerosol in the air of the Baikal coastal zone and arid zone of Mongolia // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 257–262. DOI: 10.1134/S1024856018030168.
16. Arshinov M.Yu., Belan B.D. Sutochnyi hod kontsentratsii mikrodispersnoi fraktsii aerozolya // Optika atmosf. i okeana. 2000. V. 13, N 11. P. 983–990.
17. Arshinov M.Yu., Belan B.D., Simonenkov D.V. Fotohimicheskoe obrazovanie mikrodispersnogo aerozolya v atmosfere kontinental'nogo raiona // Optika atmosf. i okeana. 2006. V. 19, N 4. P. 328–339.
18. Arshinov M.YU., Belan B.D., Paris Zh.-D., Zadde G.O., Simonenkov D.V. Prostranstvennaya i vremennaya izmenchivost' mikrodispersnoi fraktsii aerozolya (nanochastits) na territorii Sibiri // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1015–1023.
19. Khodzher T.V., Zagaynov V.A., Lushnikov A.A., Chausov V.D., Zhamsueva G.S., Zayakhanov A.S., Tsydypov V.V., Potemkin V.L., Marinaite I.I., Maksimenko V.V., Agranovsky I.E. Study of aerosol nano- and submicron particle compositions in the atmosphere of Lake Baikal during natural fire events and their interaction with water surface // Water Air Soil Poll. 2021. V. 232. P. 266. DOI: 10.1007/s11270-021-05237-6.
20. Zhamsueva G., Zayakhanov A., Khodzher T., Tcydypov V., Balzhanov T., Dementeva A. Studies of the dispersed composition of atmospheric aerosol and its relationship with small gas impurities in the near-water layer of Lake Baikal based on the results of ship measurements in the summer of 2020 // Atmosphere. 2022. V. 13. P. 139. DOI: 10.3390/atmos13010139.
21. Sungrapova I.P., Zayakhanov A.S., Zhamsueva G.S., Tsydypov V.V. Results of ultrafine aerosol measurements on the southeastern coast of Lake Baikal: St. Boyarsky // Proc. SPIE. 2020. 115606E. DOI: 10.1117/12.2575113.
22. Sungrapova I.P., Zayahanov A.S., Zhamsueva G.S., Tsydypov V.V. Rezul'taty issledovanii mikrodispersnogo aerozolya v prizemnom sloe atmosfery g. Ulan-Ude // Sovremennye tendentsii i perspektivy razvitiya gidrometeorologii v Rossii. Materialy II Vseros. nauch.-prakt. konf., priurochennoi k 55-letiyu kafedry gidrologii i prirodopol'zovaniya. Irkutsk: IGU, 2019. P. 632–637.
23. Dement'eva A.L., Zhamsueva G.S., Zayahanov A.S. Prostranstvenno-vremennye variatsii melkodispersnyh fraktsii aerozolya v atmosfere aridnyh territorii // Snezhnyi pokrov, atmosfernye osadki, aerozoli: klimat i ekologiya severnyh territorii i baikal'skogo regiona: Materialy 1-i Mezhdunar. nauch.-prakt. konf. Irkutsk: Irkut. natsion. issled. tehn. un-t, 2017. P. 194–197.
24. Zayahanov A.S., Zhamsueva G.S., Tsydypov V.V., Bal'zhanov T.S. Issledovanie submikronnoi fraktsii aerozolya v atmosfere pustyni Gobi // Vestn. VSGUTU. 2015. V. 52, N 1. P. 10–12.
25. Gubanova D.P., Chhetiani O.G., Kuderina T.M., Iordanskii M.A., Maksimenkov L.O., Artamonova M.S. Mnogoletnyaya izmenchivost' sostava prizemnogo aerozolya v opustynennyh i zasushlivyh zonah yuga Rossii // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 456–464. DOI: 10.15372/AOO20220604; Gubanova D.P., Chkhetiani O.G., Kuderina T.M., Iordanskii M.A., Maksimenkov L.O., Artamonova M.S. Long-term variability of the composition of near-surface aerosol over desertified and arid zones in southern Russia // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 680–690. DOI: 10.1134/S1024856022060148.
26. Valiulin S.V., Baklanov A.M., Dubtsov S.N., Mitochenko V.G., Moiseenko P.P., Onishchuk A.A. Diffuzionnyi spektrometr aerozolya dlya izmereniya raspredeleniya po razmeram i kontsentratsii nano- i submikronnyh chastits // Pribory i tehnika eksperimenta. 2019. N 1. P. 145–146. DOI: 10.1134/S0032816219010269.
27. Dubtsov S., Ovchinnikova T., Valiulin S., Chen X., Manninen H.E., Aalto P.P., Petäjä T. Laboratory verification of Aerosol Diffusion Spectrometer and the application to ambient measurements of new particle formation // J. Aerosol Sci. 2017. V. 105. P. 10–23. DOI: 10.1016/j.jaerosci.2016.10.015.
28. Onischuk A.A., Valiulin S.V., Baklanov A.M., Moiseenko P.P., Mitrochenko V.G. Determination of the aerosol particle size distribution by means of the diffusion battery: Analytical inversion // Aerosol Sci. Tech. 2018. V. 5, N 8. P. 841–853. DOI: 10.1080/02786826.2017.1387642.
29. Метеостанция кабельная DAVIS Instruments Vantage Pro2 6152CEU. URL: https://davis-meteo.ru/ product/6152ceu/ (дата обращения: 15.01.2024).
30. WeatherArchive.ru. URL: https: // weatherarchive.ru/Temperature/Tsimlyansk/August-2021 (дата обращения: 24.01.2024).
31. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Amer. Meteor. Soc. 2015. V. 96. P. 2059–2077. DOI: 10.1175/BAMS-D-14-00110.1.
32. ARL NOAA. HYSPLIT Trajectory Model. URL: www.arl.noaa.gov (data obrashcheniya: 04.12.2023).
33. Titkova T.B., Zolotokrylin A.N. Letnie klimaticheskie izmeneniya na yuge Evropeiskoi Rossii // Fundamental'naya i prikladnaya klimatologiya. 2022. V. 8, N 1. P. 107–121. DOI: 10.21513/2410-8758-2022-1-107-121.
34. Gubanova D.P., Chhetiani O.G., Maksimenkov L.O., Iordanskii M.A. Massovyi i elementnyi sostav prizemnogo aerozolya razlichnyh razmernyh fraktsii v opustynennyh i zasushlivyh raionah yuga Rossii // Fundamental'nye i prikladnye aspekty geologii, geofiziki i geoekologii s ispol'zovaniem sovremennyh informatsionnyh tehnologii: Materialy VII Mezhdunar. nauch.-prakt. konf. 2023. P. 88–98.
35. Zhidkova A.YU., Kovyarova V.A. Rostovskaya oblast' – zona klimaticheskoi uyazvimosti // Vestn. Taganrogskogo instituta im. A.P. Chehova. 2020. N 2. P. 124–129.
36. Wang Z., Wu Z., Yue D., Shang D., Guo S., Sun J., Ding A., Wang L., Jiang J., Guo H., Gao J., Cheung H.C., Morawska L., Keywood M., Hu M. New particle formation in China: Current knowledge and further directions // Sci. Total Environ. 2017. V. 577. P. 258–266. DOI: 10.1016/j.scitotenv.2016.10.177.
37. Young L.H., Keeler G.J. Summertime ultrafine particles in urban and industrial air: Aitken and nucleation mode particle events // Aerosol Air Qual. Res. 2007. V. 7. P. 379–402.
38. Dinoi A., Conte M., Grasso F.M., Contini D. Long-term characterization of submicron atmospheric particles in an urban background site in southern Italy // Atmosphere. 2020. V. 11, N 4. P. 334. DOI: 10.3390/atmos11040334.
39. Gmurman V.E. Teoriya veroyatnostei i matematicheskaya statistika. M.: Vysshaya shkola, 2004. 479 p.
40. Nasledov A.D. Matematicheskie metody psihologicheskogo issledovaniya. Analiz i interpretatsiya dannyh: ucheb. posobie. SPb.: Rech', 2007. 392 p.