Vol. 37, issue 05, article # 9
Copy the reference to clipboard
Abstract:
The processes of planetary wave breaking (Rossby Wave Breaking – RWB) significantly contribute to variability in stratospheric circulation. Employing a previously developed method for identifying RWB, adapted for stratospheric circulation, this study analyzes the climatology and long-term variability of RWB processes in the middle stratosphere. The method is based on the analysis of potential vorticity (PV) contour geometry at the 850-K level using ERA5 data within the PV range 0–400 PVU (Potential Vorticity Units) determined based on PV field climatology. It was demonstrated that RWB processes exhibit intraseasonal peculiarities. Most frequently, waves break in the northern regions of East Asia and the Pacific Ocean from October to December and in April to March. In January and February, no areas with prevailing RWB processes were identified. We obtained statistically significant increase in the number of RWB for the first half of winter (October–December) and for the end of the winter period (March and April). For mid-winter (January and February), insignificant negative trends were obtained.
Keywords:
planetary wave disruption, stratosphere, stratospheric polar vortex, sudden stratospheric warming, potential vorticity, contours of potential vorticity
Figures:
References:
1. Holton J.R. Introduction to Dynamic Meteorology. 4th ed. Amsterdam: Elsevier, 2004. 535 p.
2. Charney J.G., Drazin P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere // J. Geophys. Res. 1961. V. 66, N 1. P. 83–109.
3. McIntyre M.E., Palmer T.N. Breaking planetary waves in the stratosphere // Nature. 1983. V. 305, N 5935. P. 593–600.
4. Krupchatnikov V.N., Borovko I.V. Rossby wave breaking and blocking events associated with some atmospheric circulation regimes in the Northern Hemisphere based on a climate system model (PlaSim-ICMMG-1.0) // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 611. P. 012015.
5. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59, N 1. P. e2020RG000708.
6. Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Dolgovremennaya izmenchivost' parametrov vnezapnyh stratosfernyh poteplenij po dannym reanaliza ERA5 // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 200–208; Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 370–378.
7. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks // J. Clim. 2007. V. 20, N 3. P. 449–469.
8. Labitzke K. Interannual variability of the winter stratosphere in the Northern Hemisphere // Mon. Weather Rev. Am. Meteorol. Soc. 1977. V. 105, N 6. P. 762–770.
9. Labitzke K. The amplification of height wave 1 in January 1979: A characteristic precondition for the major warming in February // Mon. Weather Rev. 1981. V. 109, N 5. P. 983–989.
10. Bancalá S., Krüger K., Giorgetta M. The preconditioning of major sudden stratospheric warmings // J. Geophys. Res.: Atmos. 2012. V. 117, N D4 0148–0227. . P.
11. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings // J. Clim. 2004. V. 17, N 13. P. 2584–2596.
12. Zorkaltseva O. Amplitude of planetary wave 1, 2, 3 in the stratosphere from 1979 to 2022. Zenodo. 2023. URL: https://doi.org/10.5281/zenodo.10011889.
13. McIntyre M.E., Palmer T.N. The “surf zone” in the stratosphere // J. Atmos. Terr. Phys. 1984. V. 46, N 9. P. 825–849.
14. Baldwin M.P., Holton J.R. Climatology of the stratospheric polar vortex and planetary wave breaking // J. Atmos. Sci. 1988. V. 45, N 7. P. 1123–1142.
15. Knox J.A., Harvey V.L. Global climatology of inertial instability and Rossby wave breaking in the stratosphere // J. Geophys. Res.: Atmos. 2005. V. 110, N D6. P. n/a-n/a.
16. Hitchman M.H., Huesmann A.S. A Seasonal Climatology of Rossby Wave Breaking in the 320–2000-K Layer // J. Atmos. Sci. 2007. V. 64, N 6. P. 1922–1940.
17. Abatzoglou J.T., Magnusdottir G. Wave breaking along the stratospheric polar vortex as seen in ERA-40 data // Geophys. Res. Lett. 2007. V. 34, N 8. P. L08812.
18. Greer K., Thayer J.P., Harvey V.L. A climatology of polar winter stratopause warmings and associated planetary wave breaking // J. Geophys. Res.: Atmos. 2013. V. 118, N 10. P. 4168–4180.
19. Gochakov A.V., Antokhina O.Yu., Krupchatnikov V.N., Martynova Yu.V. Method for identifying and clustering Rossby wave breaking events in the Northern Hemisphere // Russ. Meteorol. Hydrol. 2021. V. 46, N 1. P. 10–18.
20. Gochakov A.V., Antokhina O.Yu., Krupchatnikov V.N., Martynova Yu.V. Long-term variability of Rossby wave breaking in the subtropical jet stream area // Russ. Meteorol. Hydrol. 2022. V. 47, N 2. P. 79–88.
21. Zorkaltseva O. Ssw events_1979_2021. DOI: 10.5281/zenodo.7454265.
22. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Chiara G. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049.
23. Harvey V.L. A climatology of stratospheric polar vortices and anticyclones // J. Geophys. Res. 2002. V. 107, N D20.
24. Tung K.K., Lindzen R.S. A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears // Mon. Weather Rev. 1979. V. 107, N 6. P. 735–750.
25. Held I.M., Ting M., Wang H. Northern winter stationary waves: Theory and modeling // J. Clim. 2002. V. 15, N 16. P. 2125–2144.
26. Garfinkel C.I., White I., Gerber E.P., Jucker M., Erez M. The building blocks of Northern Hemisphere wintertime stationary waves // J. Clim. 2020. V. 33, N 13. P. 5611–5633.
27. Zyulyaeva Yu.A., Zhadin E.A. Analysis of three-dimensional Eliassen-Palm fluxes in the lower stratosphere // Russ. Meteorol. Hydrol. 2009. V. 34, N 8. P. 483–490.
28. Scott R.K., Dritschel D.G., Polvani L.M., Waugh D.W. Enhancement of Rossby wave breaking by steep potential vorticity gradients in the winter stratosphere // J. Atmos. Sci. 2004. V. 61, N 8. P. 904–918.
29. Gur'yanov V.V., Eliseev A.V., Mohov I.I., Perevedencev Yu.P. Volnovaya aktivnost' i ee izmeneniya v troposfere i stratosfere Severnogo polushariya zimoj v 1979–2016 years // Izv. RAN. Fiz. atmosf. i okeana. 2018. V. 54, N 2. P. 133–146.
30. Quiroz R.S. The association of stratospheric warmings with tropospheric blocking // J. Geophys. Res. 1986. V. 91, N D4. P. 5277.
31. Kim B.-M., Son S.-W., Min S.-K., Jeong J.-H., Kim S.-J., Zhang X., Shim T., Yoon J.-H. Weakening of the stratospheric polar vortex by Arctic sea – ice loss // Nature Commun. 2014. V. 5, N 1. P. 4646.
32. Tyrlis E., Manzini E., Bader J., Ukita J., Nakamura H., Matei D. Ural Blocking driving extreme Arctic sea ice loss, cold Eurasia, and stratospheric vortex weakening in autumn and early winter 2016–2017 // J. Geophys. Res.: Atmos. 2019. V. 124, N 21. P. 11313–11329.
33. Peings Y. Ural Blocking as a driver of early-winter stratospheric warmings // Geophys. Res. Lett. 2019. V. 46, N 10. P. 5460–5468.
34. Chen X., Luo D., Wu Y., Dunn-Sigouin E., Lu J. Nonlinear response of atmospheric blocking to early winter Barents-Kara Seas warming: An idealized model study // J. Clim. 2020. V. 34, N 6. P. 1–42.
35. Zhou H., Fan K. Decadal change of the linkage between sea ice over the Barents–Kara Seas in November-December and the stratospheric polar vortex in subsequent January // J. Meteorol. Res. 2022. V. 36, N 4. P. 601–617.
36. Antohina O.Yu., Antohin P.N., Zorkal'ceva O.S., Gochakov A.O., Martynova Yu.V., Mordvinov V.I. Izmenenie otklika prizemnoj temperatury vozduha na kolebaniya povtoryaemosti blokirovaniya v Atlantiko-Evroaziatskom sektore v osenne-zimnij period // Meteorol. i gidrol. 2023. N 11. P. 5–19.