Vol. 37, issue 05, article # 6
Copy the reference to clipboard
Abstract:
A flight experiment was carried out in which turbulence was sounded with the UV lidar BSE-5 from the Tu-134 Optik laboratory aircraft. The experiment was conducted in September 2022 as part of the Arctic exploration program. During the flights, lidar recorded zones of moderate turbulence in the lower troposphere, where the probability of turbulence is maximal, and isolated cases of clear air turbulence (CAT) at an altitude of 9 km. The intensity of the aircraft shaking was monitored using a 3-coordinate accelerometer. It was found that the turbulent lidar can be used in practice for remote detection of turbulent zones at altitudes where most commercial flights are carried out. The prospect of ground-based application of turbulent lidar for solving aviation safety problems during flights in the lower troposphere is shown. The results of the BSE-5 lidar sounding in winter, when an increase in the intensity of turbulence in the 0.4–1.6 km layer was recorded during the passage of a cold front, are presented.
Keywords:
turbulent lidar, backscattering enhancement, Kelvin–Helmholtz instability, clear air turbulence
References:
1. Rukovodstvo po prognozirovaniyu meteorologicheskikh uslovii dlya aviatsii. L.: Gidrometeoizdat, 1985. 302 p.
21. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoi atmosfere. L.: Gidrometeoizdat, 1976. 288 p.
3. Shakina N.P. Gidrodinamicheskaya neustoichivost' v atmosfere. L.: Gidrometeoizdat, 1990. 308 p.
4. Shakina N.P., Ivanova A.R. Prognozirovanie meteorologicheskikh uslovii dlya aviatsii. M.: TRIADA LTD, 2016. 312 p.
5. Safety Report. International Civil Aviation Organization. Canada: Montreal, 2020. 64 p.
6. Yaponskoe agenstvo aerokosmicheskikh issledovanii. URL: https://www.aero.jaxa.jp/eng/research/star/ safeavio (data obrashcheniya: 12.02.2023).
7. Informatsionnoe agenstvo OREANDA. URL: https://www.oreanda.ru/en/transport/Boeing_and_JAXA_to_ Flight-test/article1173457/ (data obrashcheniya: 12.02.2023).
8. Asahara T., Inokuchi H. Method for measuring airspeed by optical air data sensor. United States patent Nо.: US 8,434,358 B2. May 7, 2013.
9. Arshinov M.Yг., Belan B.D., Kovalevskii V.K., Plotnikov A.P., Sklyadneva T.K., Tolmachev G.N. Mnogoletnyaya izmenchivost' troposfernogo aerozolya nad Zapadnoi Sibir'yu // Optika atmosf. i okeana. 2000. V. 13, N 6–7. P. 627–630.
10. Nauchno-issledovatel'skie proekty Evropeiskogo Soyuza. URL: https://cordis.europa.eu/project/id/233801 (data obrashcheniya: 12.02.2023).
11. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskii V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyi reestr otkrytii SSSR // Byull. izobretenii. 1989. N 21.
12. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
13. Rаzenkov I.А. Turbulentnyi lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
14. Rаzenkov I.А. Analiz tekhnicheskikh reshenii pri proektirovanii turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 766–776. DOI: 10.15372/AOO20220910; Razenkov I.A. Engineering and technical solutions when designing a turbulent lidar // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S148–S158. DOI: 10.1134/S1024856023010141.
15. Kravtsov Yг.A., Saichev A.I. Effekty dvukratnogo prokhozhdeniya voln v sluchaino neodnorodnykh sredakh // Uspekhi fiz. nauk. 1982. V. 137, iss. 3. P. 501–527.
16. Vorob’ev V.V. O primenimosti asimptoticheskikh formul vosstanovleniya parametrov «opticheskoi» turbulentnosti iz dannykh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
17. Voitsekhovich V.V., Orlov V.G., Guevas S., Avila R. Efficiency of off-axis astronomical adaptive systems: Comparison of theoretical and experimental data // Astron. Astrophys. Suppl. Ser. 1998. V. 133. P. 427–430.
18. Rаzenkov I.А. Zondirovanie voln Kel'vina–Gel'mgol'tsa turbulentnym lidarom // Optika atmosf. i okeana. 2023. V. 36, N 11. P. 910–920. DOI: 10.15372/AOO20231106; Razenkov I.A. Sounding of Kelvin–Helmholtz waves by a turbulent lidar: I–BSE-4 Lidar // Atmos. Ocean. Opt. 2024. V. 37, N 1. P. 55–65.
19. Kallistratova M.A., Lyulyukin V.S., Kuznetsov R.D., Petenko I.V., Zaitseva D.V., Kuznetsov D.D. Sodarnye issledovaniya voln Kel'vina–Gel'mgol'tsa v nizkourovnevykh struinykh techeniyakh // Dinamika volnovykh i obmennykh protsessov v atmosfere. M.: GEOS, 2017. 508 pp. P. 212–259.
20. Prilozhenie Ventusky kompanii InMeteo v Cрekhii. URL: https://www.ventusky.com/ (data obrashcheniya: 12.02.2023).
21. Gurvich A.S., Kon A.I., Mironov V.L., Kрmelevtsov S.S. Lazernoe izluchenie v turbulentnoi atmosfere. M.: Nauka, 1976. 280 p.
22. Sposob i lidarnaya sistema dlya operativnogo obnaruzheniya turbulentnosti v yasnom nebe s borta vozdushnogo sudna: Pat. 2798694. Russia, MKP, G01S 17/95. Rаzenkov I.А., Belan B.D., Rynkov K.A., Ivlev G.A.; Feder. gos. byud. uchr. nauki Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2023106962; Zayavl. 23.03.2023; Opubl. 23.06.2023. Byul. N 18.